第十九章 Scala语言的数据结构和算法19.1 数据结构(算法)的介绍19.2 看几个实际编程中遇到的问题19.2.1 一个五子棋程序19.2.2 约瑟夫问题(丢手帕问题)19.2.3 其它常见算法问题19.3 稀疏数组 sparsearray19.3.1 基本介绍19.3.2 应用实例19.3.3 课后练习19.4 队列 queue19.4.1 队列的一个使用场景19.4.2 队列介绍19.4.3 数组模拟单向队列19.4.4 数组模拟环形队列19.5 链表 linked list19.5.…
第一章 Scala 语言概述1.1 why is Scala 语言?1.2 Scala 语言诞生小故事1.3 Scala 和 Java 以及 jvm 的关系分析图1.4 Scala 语言的特点1.5 Windows 下搭建 Scala 开发环境1.6 Linux 下搭建 Scala 开发环境1.7 Scala 的开发工具1.7.1 IDEA介绍1.7.2 Scala 插件安装1.8 Scala 的开发快速入门1.8.1 windows 下开发步骤1.8.2 linux 下开发步骤1.8.3 ID…
第五章 函数式编程-基础5.1 函数式编程内容说明5.1.1 函数式编程内容5.1.2 函数式编程授课顺序5.2 函数式编程介绍5.2.1 几个概念的说明5.2.2 方法.函数.函数式编程和面向对象编程关系分析图5.2.3 函数式编程小结5.3 为什么需要函数5.4 函数的定义5.4.1 函数的定义5.4.2 快速入门案例5.5 函数的调用机制5.5.1 函数的调用过程5.5.2 函数的递归调用5.5.3 递归练习题5.6 函数注意事项和细节讨论5.7 函数练习题5.8 过程5.8.1 基本概念…
第十一章 数据结构(下)-集合操作11.1 集合元素的映射-map11.1.1 map 映射函数的操作11.1.2 高阶函数基本使用案例1+案例211.1.3 使用 map 映射函数来解决11.1.4 模拟实现 map 映射函数的机制11.1.5 课堂练习11.2 集合元素的扁平-flatMap11.3 集合元素的过滤-filter11.4 集合元素的化简-reduce11.5 集合元素的折叠-fold11.6 集合元素的扫描-scan11.7 集合的综合应用案例11.8 集合的合并-zip11…
第十章 数据结构(上)-集合10.1 数据结构特点10.1.1 Scala 集合基本介绍10.1.2 可变集合和不可变集合举例10.2 Scala 不可变集合继承层次一览图10.2.1 图10.2.2 小结10.3 Scala 可变集合继承层次一览图10.3.1 图10.3.2 小结10.4 数组-定长数组(声明泛型)10.4.1 第一种方式定义数组10.4.2 第二种方式定义数组10.5 数组-变长数组(声明泛型)10.5.1 变长数组分析小结10.5.2 定长数组与变长数组的转换10.5.3…
第二章 变量2.1 变量是程序的基本组成单位2.2 Scala 变量的介绍2.2.1 概念2.2.2 Scala 变量使用的基本步骤2.3 Scala 变量的基本使用2.4 Scala 变量使用说明2.4.1 变量声明基本语法2.4.2 注意事项2.5 Scala 程序中 +号 的使用2.6 Scala 数据类型2.6.1 scala 数据类型体系一览图2.6.2 scala 数据类型列表2.7 整数类型2.7.1 基本介绍2.7.2 整型的类型2.7.3 整型的使用细节2.8 浮点类型2.8.…
第七章 面向对象编程-中级7.1 包7.1.1 Java 中的包7.1.2 Scala 中的包7.1.3 Scala 包的特点概述7.1.4 Scala 包的命名7.1.5 Scala 会自动引入的常用包7.1.6 Scala 包注意事项和使用细节7.1.7 包对象7.1.8 包对象的底层实现机制分析(重点)7.1.9 包对象的注意事项7.2 包的可见性7.2.1 回顾 Java 包的可见性7.2.2 Scala 中包的可见性介绍7.2.3 Scala 中包的可见性和访问修饰符的使用7.3 包的…
第八章 面向对象编程-高级8.1 静态属性和静态方法8.1.1 静态属性-提出问题8.1.2 基本介绍8.1.3 伴生对象的快速入门8.1.4 伴生对象的小结8.1.5 最佳实践-使用伴生对象解决小孩游戏问题8.1.6 伴生对象-apply 方法8.2 单列对象8.3 接口8.3.1 回顾 Java 接口8.3.2 Scala 接口的介绍8.3.3 trait 的声明8.3.4 Scala 中 trait 的使用8.4 特质 trait8.4.1 特质的快速入门案例分析8.4.2 代码完成8.4…
第十三章 函数式编程-高级13.1 偏函数(partial function)13.1.1 提出一个需求,引出思考13.1.2 解决方式-filter + map 返回新的集合13.1.3 解决方式-模式匹配13.1.4 偏函数的基本介绍13.1.5 偏函数的快速入门13.1.6 偏函数的小结13.1.7 偏函数的简写形式13.2 作为参数的函数13.3 匿名函数13.4 高阶函数(higher-order function)13.5 参数(类型)推断13.6 闭包(closure)13.7 函…
1 大数据概述 大数据特性:4v volume velocity variety value 即大量化.快速化.多样化.价值密度低 数据量大:大数据摩尔定律 快速化:从数据的生成到消耗,时间窗口小,可用于生成决策的时间非常少:1秒定律,这和传统的数据挖掘技术有着本质区别(谷歌的dremel可以在1秒内调动上千台服务器处理PB级数据) 价值密度低,商业价值高 大数据影响: 对科学研究影响:出现科学研究第四方式数据(前三个分别是实验.理论.计算) 对思维方式影响:全样而非抽样.效率而非准确.相关而非…
[摘要] 知乎上一篇很不错的科普文章,介绍大数据技术生态圈(Hadoop.Hive.Spark )的关系. 链接地址:https://www.zhihu.com/question/27974418 [问题] 如何用形象的比喻描述大数据的技术生态?Hadoop.Hive.Spark 之间是什么关系? [答案1] 学习很重要的是能将纷繁复杂的信息进行归类和抽象. 对应到大数据技术体系,虽然各种技术百花齐放,层出不穷,但大数据技术本质上无非解决4个核心问题. 1.存储,海量的数据怎样有效的存储?主要包…
目前大数据已经成为了各家互联网公司的核心资产和竞争力了,其实不仅是互联网公司,包括传统企业也拥有大量的数据,也想把这些数据发挥出作用.在这种环境下,大数据技术的重要性和火爆程度相信没有人去怀疑. 而AI人工智能又是基于大数据技术基础上发展起来的,大数据技术已经很清晰了,但是AI目前还未成熟啊,所以本文就天马行空一下,从大数据的技术变迁历史中来找出一些端倪,猜一猜AI人工智能未来的发展. 最近断断续续的在看<极客时间>中「 从0开始学大数据 」专栏的文章,受益匪浅,学到了很多.尤其是非常喜欢作者…
在大数据处理以及分析中 SQL 的普及率非常高,几乎是每一个大数据工程师必须掌握的语言,甚至非数据处理岗位的人也在学习使用 SQL.今天这篇文章就聊聊 SQL 在数据分析中作用以及掌握 SQL 的必要性. SQL解决了什么问题 SQL的中文翻译为:结构化查询语言.这里面有三层含义:首先这是一门编程语言:其次,这是一门查询语言:最后,这是在结构化数据上做查询的语言.结构化数据就是数据库里的二维表,不了解数据库的读者可以把它看做 Excel 里面的表格.虽然 SQL可以解决查询问题,但是 SQL 并…
  第1章 大数据概论 1.1 大数据概念 大数据概念如图2-1 所示. 图2-1 大数据概念 1.2 大数据特点(4V) 大数据特点如图2-2,2-3,2-4,2-5所示 图2-2 大数据特点之大量 图2-3 大数据特点之高速 图2-4 大数据特点之多样 图2-5 大数据特点之低价值密度 1.3 大数据应用场景 大数据应用场景如图2-6,2-7,2-8,2-9,2-10,2-11所示 图2-6 大数据应用场景之物流仓储 图2-7 大数据应用场景之零售 图2-8 大数据应用场景之旅游 图2-9…
除Hadoop外的9个大数据技术: 1.Apache Flink 2.Apache Samza 3.Google Cloud Data Flow 4.StreamSets 5.Tensor Flow 6.Apache NiFi 7.Druid 8.LinkedIn WhereHows 9.Microsoft Cognitive Services Hadoop是大数据领域最流行的技术,但并非唯一.还有很多其他技术可用于解决大数据问题.除了Apache Hadoop外,另外9个大数据技术也是必须要了…
2013年12月5日-6日参加了为期两天的2013中国大数据技术大会(Big Data Technology Conference, BDTC2013),本期会议主题是:“应用驱动的架构与技术 ”.大数据概念最近真是火得不行,从大会多达7个的“大数据架构与系统”.“大数据技术”.“大数据应用”.“大数据研究与发展”.“大数据基准测试”“智能交通与大数据”以及“传统行业如何驾驭大数据”主题论坛,再到现场爆棚的人群,可见大家拥抱大数据的高涨热情. 在9月份读完了一本<大数据时代>,后面又听大学老师…
http://blog.sina.com.cn/s/blog_7ca5799101013dtb.html 目前,虽然大数据与数据库一体机都很火热,但相当一部分人却无法对深入了解这两者的本质区别.这里便对大数据技术(如Hadoop等,主要指MapReduce与NoSQL)与数据库一体机(新一代的主流关系数据库)技术对比如下: 硬件架构 从本质上来讲,两者的硬件架构基本相同,都是采用x86服务器集群的分布式并行模式来应对大规模的数据与计算.但是,数据库一体机的商家大都会对硬件体系进行面向产品化的.系…
WOT2016大数据技术峰会是一场聚焦大数据领域最前沿的的技术及经验分享.2016年11月25-26日北京粤财JW万豪酒店如约而至,会议规模达到1000人! 由51CTO主办的千人技术盛宴--WOT2016大数据技术峰会旨在帮助企业深入了解国内外最新大数据技术,掌握更多行业大数据实践经验,进一步推进国内大数据技术创新.行业应用和人才培养.希望通过WorldOfTech(WOT)技术会议平台为中国大数据相关从业人员搭建一个互动学习交流的平台,通过大数据架构先进设计实践经验.大数据应用的典型成功案例…
本章来简单介绍下 Hadoop MapReduce 中的 Combiner.Combiner 是为了聚合数据而出现的,那为什么要聚合数据呢?因为我们知道 Shuffle 过程是消耗网络IO 和 磁盘IO 比较大的操作,如果我们能减少 Shuffle 过程的数据量,那就可以提升整个 MR 作业的性能.我在<大数据技术 - MapReduce的Shuffle及调优> 一文中写到 Shuffle 中会有两次调用 Combiner 的过程,有兴趣的朋友可以再翻回去看看.接下来我们还是以 WordCou…
原文地址:https://blog.csdn.net/bingdata123/article/details/79927507 Google是大数据时代的奠基者,其大数据技术架构一直是互联网公司争相学习和 研究的重点,也是行业大数据技术架构的标杆和示范. 1.谷歌的数据中心 谷歌已经建立了世界上最快.最强大.最高质量的数据中心,它的8个主要数据中心都远离其位于加州山景城的总部,分别位于美国南卡罗来纳州的伯克利郡,爱荷华州的康瑟尔布拉夫斯,乔治亚州的道格拉斯郡,俄克拉荷马州的梅斯郡,北卡罗来纳州的…
16日上午9点,2016云栖大会“开源大数据技术专场” (全天)在阿里云技术专家封神的主持下开启.通过封神了解到,在上午的专场中,阿里云高级技术专家无谓.阿里云技术专家封神.阿里巴巴中间件技术部高级技术专家天梧.阿里巴巴中间件技术部资深技术专家纪君祥将给大家带来Hadoop.Spark.HBase.JStorm Turbo等内容. 无谓:Hadoop过去现在未来,从阿里云梯到E-MapReduce 阿里云高级技术专家 无谓 从开辟大数据先河至现在,风雨十年,Hadoop已成为企业的通用大数据框架…
摘要:距离上一次MaxCompute新功能的线上发布已经过去了大约一个季度的时间,而在这一段时间里,MaxCompute不断地在增加新的功能和特性,比如参数化视图.UDF支持动态参数.支持分区裁剪.生成建表DDL语句功能等功能都已经得到了广大开发者的广泛使用.那么,近期MaxCompute究竟还有哪些新特性呢?本文就为大家揭晓答案. 以下内容根据视频及PPT整理而成. MaxCompute与阿里云大数据产品解决方案 在介绍MaxCompute新功能前,我们先快速对阿里云的大数据产品解决方案进行介…
​无论是网络时代的传统营销还是大数据营销,营销人员的任务之一就是找到目标客户,实现自己的营销目标.而我们说的大数据营销只不过是营销的工具发生了变化,营销的本质和目标是不变的. 就目前而言,现在的大数据技术为绝大部分的业务提供了许多功能,同时还提高了效率和收入.当然除了这些以外,大数据分析还为公司的潜在客户和现有客户提供了许多好处.这些优点让很多公司对于大数据技术十分向往,那么普通公司如果没有大数据技术该怎么办呢?现在,已经出现了越来越多的大数据分析平台了,公司可以根据自己的需求选择合适的大数据分…
2016年12月8日-10日,由中国计算机学会(CCF)主办,CCF大数据专家委员会承办,中国科学院计算技术研究所和CSDN共同协办的2016中国大数据技术大会(Big Data Technology Conference 2015,BDTC 2016)将在北京新云南皇冠假日酒店隆重举办. 图片描述 中国大数据技术大会(BDTC)的前身是Hadoop中国云计算大会(Hadoop in China,HiC).从2008年仅60余人参加的技术沙龙到当下数千人的技术盛宴,目前已成为国内最具影响力.规模…
超人学院Hadoop大数据技术资源分享 http://bbs.superwu.cn/forum.php?mod=viewthread&tid=807&fromuid=645 很多其它精彩内容请关注:http://bbs.superwu.cn 关注超人学院微信二维码:…
中国大数据技术大会(BDTC)的前身是Hadoop中国云计算大会(HadoopinChina,HiC).从2008年仅60余人参加的技术沙龙发展到当下数千人的技术盛宴,目前已成为国内最具影响力.规模最大的大数据领域技术盛会.中国大数据技术大会(BDTC)作为极具实战价值的专业交流平台,中国大数据技术大会已经成为国内外中高级技术精英最期待的深度分享会. 2016中国大数据技术大会将于12月8日-10日在北京举行,大会为期三天,聚焦行业最佳实践,数据与应用的深度融合,关注热门技术在行业中的实践和应用…
本篇文章内容来自2016年TOP100summitWalmartLabs实验室广告平台首席工程师.架构师粟迪夫的案例分享. 编辑:Cynthia 粟迪夫:WalmartLabs实验室广告平台首席工程师.架构师 在大数据平台架构设计.消息中间件.分布式系统等领域有丰富经验. 作为技术负责人,帮助多家企业搭建了大数据平台和分布式系统. 目前主导WMX大数据平台.广告效益分析系统和实时数据管道的开发. 导读:作为世界上最大的商品零售商,沃尔玛每天都投放大量的广告.产生大量的商品交易,生成大量数据,需要…
本文来自腾讯云技术沙龙,本次沙龙主题为构建PB级云端数仓实践 在现代社会中,随着4G和光纤网络的普及.智能终端更清晰的摄像头和更灵敏的传感器.物联网设备入网等等而产生的数据,导致了PB级储存的需求加大. 但数据保留下来并不代表它真的具有利用价值,曾经保存的几TB的日志,要么用来做做最简单的加减乘除统计,要么就在日后出现问题了,扒出日志堆找证据.你的影视库里面可以下载储存成千上万部影片,但不代表你真的能全部看完. 如何将手里现有的数据变得更具有价值?一些营销云已经可以做到毫秒级响应做到精准投放广告…
摘要: 本论坛第一次聚集阿里Hadoop.Spark.Hbase.Jtorm各领域的技术专家,讲述Hadoop生态的过去现在未来及阿里在Hadoop大生态领域的实践与探索. 开源大数据技术专场下午场在阿里技术专家封神的主持下开始,参与分享的嘉宾有Spark Commiter.来自Databriks的范文臣,HDFS committer.Intel 研发经理郑锴,逸晗网络科技大数据平台负责人杨智,Intel技术专家毛玮,以及阿里云技术专家木艮.   Databricks范文臣:Deep Dive…
我秀中国物联网地图服务平台目前接入的监控车辆近百万辆,每天采集GPS数据7亿多条,产生日志文件70GB,使用传统的数据处理方式非常耗时. 比如,仅仅对GPS做一些简单的统计分析,程序就需要几个小时才能跑完一天的数据,完全达不到实时分析的要求,更无法对数据进行一些深层次的挖掘. 另外历史数据的存储也是一个亟待解决的问题,目前大多采用的方式是将日志文件进行压缩后上传到服务器上进行存储. 这种方式既原始又不可靠,一是需要作业员每天定时手动上传数据,操作不方便:二是一旦存储数据的服务器出现问题,可能会造…