Stackoverflow.com是程序员的好去处,本公众号将以pandas为主题,开始一个系列,争取做到每周一篇,翻译并帮助pandas学习者一起理解一些有代表性的案例.今天的主题就是Pandas与Numpy中一个非常重要的参数:axis.(轴) Stackoverflow问题如下: python中的axis究竟是如何定义的呢?他们究竟代表是DataFrame的行还是列?考虑以下代码: >>>df = pd.DataFrame([[1, 1, 1, 1], [2, 2, 2, 2],…
1. python 中 axis 参数直觉解释 网络上的解释很多,有的还带图带箭头.但在高维下是画不出什么箭头的.这里阐述了 axis 参数最简洁的解释. 假设我们有矩阵a, 它的shape是(4, 3), 如下: import numpy as np a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]) # a.shape = (4, 3) 要做如下不同维度求和操作: # keepdims=True 保持了结果维度 s0 =…
nan:not a number inf:infinity;正无穷 numpy中的nan和inf都是float类型     t!=t 返回bool类型的数组(矩阵) np.count_nonzero() 返回的是数组中的非0元素个数:true的个数. np.isnan() 返回bool类型的数组. 那么问题来了,在一组数据中单纯的把nan替换为0,合适么?会带来什么样的影响? 比如,全部替换为0后,替换之前的平均值如果大于0,替换之后的均值肯定会变小,所以更一般的方式是把缺失的数值替换为均值(中…
Python pandas: check if any value is NaN in DataFrame # 查看每一列是否有NaN: df.isnull().any(axis=0) # 查看每一行是否有NaN: df.isnull().any(axis=1) # 查看所有数据中是否有NaN最快的: df.isnull().values.any() # In [2]: df = pd.DataFrame(np.random.randn(1000,1000)) In [3]: df[df > 0…
Numpy中matrix必须是2维的,但是 numpy中array可以是多维的(1D,2D,3D····ND).matrix是array的一个小的分支,包含于array.所以matrix 拥有array的所有特性. matrix() 和 array() 的区别,主要从以下方面说起: 矩阵生成方式不同 import numpy as np a1 = np.array([[1, 2], [3, 4]]) b1 = np.mat([[1, 2], [3, 4]]) a2 = np.array(([1,…
参考:http://www.php.cn/wenda/91257.html https://www.cnblogs.com/king-lps/p/7846414.html http://blog.csdn.net/kancy110/article/details/75043202…
记性不好,多记录些常用的东西,真·持续更新中::先列出一些常用的网址: 参考了的 莫烦python pandas DOC numpy DOC matplotlib 常用 习惯上我们如此导入: import pandas as pd import numpy as np import maplotlib.pyplot as plt pandas 篇 pd.Series是一种一维的数组结构,可以列表形式初始化,得到的Series的index默认∈[0,n) s = pd.Series([1, 3,…
https://blog.csdn.net/sky_kkk/article/details/79725646 numpy中axis取值的说明首先对numpy中axis取值进行说明:一维数组时axis=0,二维数组时axis=0,1,维数越高,则axis可取的值越大,数组n维时,axis=0,1,…,n.为了方便下面的理解,我们这样看待:在numpy中数组都有着[]标记,则axis=0对应着最外层的[],axis=1对应第二外层的[],以此类推,axis=n对应第n外层的[].下面开始从axis=…
转载:https://blog.csdn.net/amuchena/article/details/89060798和https://www.runoob.com/python/python-func-sum.html numpy中的sum()函数和python中不太一样:…
代码 需要先导入pandas arr的数据类型为一维的np.array import pandas as pd arr[~pd.isnull(arr)] 补充知识:python numpy.mean() axis参数使用方法[sum(axis=*)是求和,mean(axis=*)是求平均值] 如下所示: import numpy as np X = np.array([[1, 2], [4, 5], [7, 8]]) print(np.mean(X, axis=0, keepdims=True)…