舵轮AGV可以通过调整两个舵轮的角度及速度,可以使小车在不转动车头的情况下实现变道,转向等动作,甚至可以实现沿任意点为半径的转弯运动,有很强的灵活性. 因此在AGV行业,这种驱动方式应用很广,但是目前能做好控制的厂家并不多.国内比较好的厂家主要有沈阳新松机器人.苏州华晓精密.上海同普,还有部分新创企业,苏州极客嘉智能科技有限公司,做的也很好. 该种AGV,一般包含两个舵轮,通常布置在AGV车体中心前后.或AGV车体对角分布.如图: 本文将以在车体中心前后分布方式的AGV为例,进行分析. 大家都知…
摘要 在我的想象中机器人首先应该能自由的走来走去,然后应该能流利的与主人对话.朝着这个理想,我准备设计一个能自由行走,并且可以与人语音对话的机器人.实现的关键是让机器人能通过传感器感知周围环境,并通过机器人大脑处理并输出反馈和执行动作.本章节涉及到的传感器有激光雷达.IMU.轮式里程计.麦克风.音响.摄像头,和用于处理信息的嵌入式主板.关于传感器的ROS驱动程序开发和在机器人上的使用在后面的章节会展开,本章节重点对机器人传感器和嵌入式主板进行讲解,主要内容: 1.ydlidar-x4激光雷达 2…
单舵轮(叉车)AGV里程计数据解算 2016-07 单舵轮AGV,一般包含一个驱动轮和两个从动轮,驱动轮是同时具备行走和转向两个功能的舵轮,因此,单舵轮AGV的运动学自由度为2个.舵轮线速度V1,舵轮转角θ. AGV机器人里程计一般包含2 个方面的信息: 一.是位姿(位置和转角),即(x,y,θ). 二.是速度(前进速度AGV的线速度V和转向速度AGV的角速度W). 为了建立理想运动学模型,我们需要假设以下情况: 一.舵轮与地面之间行走无滑动摩擦: 二.AGV运行的平面为水平面,没有坡度: 建立…
摘要 运动底盘是移动机器人的重要组成部分,不像激光雷达.IMU.麦克风.音响.摄像头这些通用部件可以直接买到,很难买到通用的底盘.一方面是因为底盘的尺寸结构和参数是要与具体机器人匹配的:另一方面是因为底盘包含软硬件整套解决方案,是很多机器人公司的核心技术,一般不会随便公开.出于强烈的求知欲与学习热情,我想自己DIY一整套两轮差分底盘,并且将完整的设计过程公开出去供大家学习.说干就干,本章节主要内容: 1.stm32主控硬件设计 2.stm32主控软件设计 3.底盘通信协议 4.底盘ROS驱动开发…
SLAM 主要分为两个部分:前端和后端,前端也就是视觉里程计(VO),它根据相邻图像的信息粗略的估计出相机的运动,给后端提供较好的初始值.VO的实现方法可以根据是否需要提取特征分为两类:基于特征点的方法,不使用特征点的直接方法. 基于特征点的VO运行稳定,对光照.动态物体不敏感. 图像特征点的提取和匹配是计算机视觉中的一个基本问题,在视觉SLAM中就需要首先找到相邻图像对应点的组合,根据这些匹配的点对计算出相机的位姿(相对初始位置,相机的旋转和平移). 本文对这段时间对特征点的学习做一个总结,主…
x264代码剖析(十五):核心算法之宏块编码中的变换编码 为了进一步节省图像的传输码率.须要对图像进行压缩,通常採用变换编码及量化来消除图像中的相关性以降低图像编码的动态范围.本文主要介绍变换编码的相关内容,并给出x264中变换编码的代码分析. 1.变换编码 变换编码将图像时域信号变换成频域信号,在频域中图像信号能量大部分集中在低频区域.相对时域信号.码率有较大的下降. H.264对图像或预測残差採用4×4整数离散余弦变换技术,避免了以往标准中使用的通用8×8离散余弦变换逆变换常常出现的失配问题…
从现在开始下面两篇文章来介绍SLAM中的视觉里程计(Visual Odometry).这个是我们正式进入SLAM工程的第一步,而之前介绍的更多的是一些基础理论.视觉里程计完成的事情是视觉里程计VO的目标是根据拍摄的图像估计相机的位姿.目前主要有两个方法,我们这一篇介绍的是特征点法. 首先,我们之前提到了路标.SLAM中是根据路标的位置变化来估计自身的运动的.路标是三维空间中固定不变的点,应该有这么几个特征: 数量充足,以实现良好的定位 具有较好的区分性,以实现数据关联而图像的特征点可以比较好的满…
1. svo 源码:https://github.com/uzh-rpg/rpg_svo 国内对齐文章源码的研究: (1)冯斌: 对其代码重写 https://github.com/yueying/OpenMVO 对原理的一步步分析http://fengbing.net/ (2)白巧克力: 对文章的具体分析:http://blog.csdn.net/heyijia0327/article/details/51083398 2. svo+msf 文章:见我的分享http://pan.baidu.c…
1 不跟你多废话 上代码! /// <summary> /// SQL关键字转换器 /// </summary> public class SqlConverter : IKeywordsConvertible { public SqlConverter(string[] keywords) { Keywords = keywords; } public SqlConverter() { } /// <summary> /// 关键字集合 /// </summar…
相机成像的过程实际是将真实的三维空间中的三维点映射到成像平面(二维空间)过程,可以简单的使用小孔成像模型来描述该过程,以了解成像过程中三维空间到二位图像空间的变换过程. 本文包含两部分内容,首先介绍小孔成像模型的各种几何关系:接着描述了成像过程中的四种坐标系(像素坐标,图像坐标,相机坐标,世界坐标)的变换关系. 小孔成像模型 相机可以抽象为最简单的形式:一个小孔和一个成像平面,小孔位于成像平面和真实的三维场景之间,任何来自真实世界的光只有通过小孔才能到达成像平面.因此,在成像平面和通过小孔看到的…