原理 对数损失, 即对数似然损失(Log-likelihood Loss), 也称逻辑斯谛回归损失(Logistic Loss)或交叉熵损失(cross-entropy Loss), 是在概率估计上定义的.它常用于(multi-nominal, 多项)逻辑斯谛回归和神经网络,以及一些期望极大算法的变体. 可用于评估分类器的概率输出. 对数损失通过惩罚错误的分类,实现对分类器的准确度(Accuracy)的量化. 最小化对数损失基本等价于最大化分类器的准确度.为了计算对数损失, 分类器必须提供对输入…
最近太忙已经好久没有写博客了,今天整理分享一篇关于损失函数的文章吧,以前对损失函数的理解不够深入,没有真正理解每个损失函数的特点以及应用范围,如果文中有任何错误,请各位朋友指教,谢谢~ 损失函数(loss function)是用来估量模型的预测值f(x)与真实值Y的不一致程度,它是一个非负实值函数,通常使用L(Y, f(x))来表示,损失函数越小,模型的鲁棒性就越好.损失函数是经验风险函数的核心部分,也是结构风险函数重要组成部分.模型的结构风险函数包括了经验风险项和正则项,通常可以表示成如下式子…
链表是一种基础的数据结构,也是算法学习的重中之重.其中单链表反转是一个经常会被考察到的知识点. 单链表反转是将一个给定顺序的单链表通过算法转为逆序排列,尽管听起来很简单,但要通过算法实现也并不是非常容易.现在来给大家简单介绍一下单链表反转算法实现的基本原理和python代码实现. 算法基本原理及python代码1.方法一:三个指针遍历反转算法思想:使用3个指针遍历单链表,逐个链接点进行反转. (1)分别用p,q两个指针指定前后两个节点.其中p.next = q (2)将p指针指向反方向. (3)…
penalty term 和 loss function 看起来很相似,但其实二者完全不同. 惩罚因子: penalty term的作用是把受限优化问题转化为非受限优化问题. 比如我们要优化: min f(x) = $x^2 - 10x$  x 受限于 g(x) = x -3 <= 0 我们可以利用惩罚因子,将上述问题转化为非受限约束问题,也就是拿掉g(x)的限制. 函数变为: min P(x,s,r) = $x^2 - 10x + sr\phi(x - 3)$ 其中s = +1 或-1, r…
Surrogate loss function,中文可以译为代理损失函数.当原本的loss function不便计算的时候,我们就会考虑使用surrogate loss function. 在二元分类问题中,假如我们有\(n\)个训练样本\(\{(X_1,y_1),(X_2,y_2),\cdots,(X_n,y_n)\}\),其中\(y_i\in\{0,1\}\).为了量化一个模型的好坏,我们通常使用一些损失函数,损失函数越小,模型越好.最常用的损失函数就是零一损失函数\(l(\hat y,y)…
版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/limiyudianzi/article/details/80697711 我主要分三篇文章给大家介绍tensorflow的损失函数,本篇为tensorflow自定义损失函数.  (一)tensorflow内置的四个损失函数  (二)其他损失函数  (三)自定义损失函数 自定义损失函数是损失函数章节的结尾,学习自定义损失函数,对于提高分类…
转载请注明出自BYRans博客:http://www.cnblogs.com/BYRans/ 线性回归中提到最小二乘损失函数及其相关知识.对于这一部分知识不清楚的同学可以参考上一篇文章<线性回归.梯度下降>.本篇文章主要讲解使用最小二乘法法构建损失函数和最小化损失函数的方法. 最小二乘法构建损失函数 最小二乘法也一种优化方法,用于求得目标函数的最优值.简单的说就是:让我们的预测值与真实值总的拟合误差(即总残差)达到最小. 在线性回归中使用最小二乘法构建了损失函数: 上一篇文章<线性回归.…
python信用评分卡(附代码,博主录制) https://study.163.com/course/introduction.htm?courseId=1005214003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share  1.自变量进行筛选 IV的全称是Information Value,中文意思是信息价值,或者信息量. 我们在用逻辑回归.决策树等模型方法构建分类模型时,经常需要对自变…
k-means:是无监督的分类算法 k代表要分的类数,即要将数据聚为k类; means是均值,代表着聚类中心的迭代策略. k-means算法思想: (1)随机选取k个聚类中心(一般在样本集中选取,也可以自己随机选取); (2)计算每个样本与k个聚类中心的距离,并将样本归到距离最小的那个类中; (3)更新中心,计算属于k类的样本的均值作为新的中心. (4)反复迭代(2)(3),直到聚类中心不发生变化,后者中心位置误差在阈值范围内,或者达到一定的迭代次数. python实现: k-means简单小样…
假设我们已知坐标 (x0, y0) 与 (x1, y1),要得到 [x0, x1] 区间内某一位置 x 在直线上的值.根据图中所示,我们得到 由于 x 值已知,所以可以从公式得到 y 的值 已知 y 求 x 的过程与以上过程相同,只是 x 与 y 要进行交换. python的代码实现: import matplotlib.pyplot as plt """ @brief: 计算n阶差商 f[x0, x1, x2 ... xn] @param: xi 所有插值节点的横坐标集合…