数据治理工具调研之DataHub】的更多相关文章

1.项目简介 Apache Atlas是Hadoop社区为解决Hadoop生态系统的元数据治理问题而产生的开源项目,它为Hadoop集群提供了包括数据分类.集中策略引擎.数据血缘.安全和生命周期管理在内的元数据治理核心能力. 官网地址:http://atlas.apache.org/ 2.项目架构 Data Hub使用的是Generalized metadata architecture(GMA),重点面对多种元数据可伸缩性的四项挑战. 建模:以对开发人员友好的方式对所有类型的元数据和关系进行建…
ETL是什么?为什么要使用ETL?KETTLE是什么?为什么要学KETTLE?        ETL是数据的抽取清洗转换加载的过程,是数据进入数据仓库进行大数据分析的载入过程,目前流行的数据进入仓库的过程有两种形式,一种是进入数据库后再进行清洗和转换,另外一条路线是首先进行清洗转换再进入数据库,我们的ETL属于后者. 大数据的利器大家可能普遍说是hadoop,但是大家要知道如果我们不做预先的清洗和转换处理,我们进入hadoop后仅通过mapreduce进行数据清洗转换再进行分析,垃圾数据会导致我…
数据治理意义重大,传统的数据治理采用文档的形式进行管理,已经无法满足大数据下的数据治理需要.而适合于Hadoop大数据生态体系的数据治理就非常的重要了. ​ 大数据下的数据治理作为很多企业的一个巨大的难题,能找到的数据的解决方案并不多,但是好在近几年,很多公司已经进行了尝试并开源了出来,本文将详细分析这些数据发现平台,在国外已经有了十几种的实现方案. 数据发现平台可以解决的问题 为什么需要一个数据发现平台? 在数据治理过程中,经常会遇到这些问题: 数据都存在哪? 该如何使用这些数据? 数据是做什…
DataHub 首先,阿里云也有一款名为DataHub的产品,是一个流式处理平台,本文所述DataHub与其无关. 数据治理是大佬们最近谈的一个火热的话题.不管国家层面,还是企业层面现在对这个问题是越来越重视.数据治理要解决数据质量,数据管理,数据资产,数据安全等等.而数据治理的关键就在于元数据管理,我们要知道数据的来龙去脉,才能对数据进行全方位的管理,监控,洞察. DataHub是由LinkedIn的数据团队开源的一款提供元数据搜索与发现的工具. 提到LinkedIn,不得不想到大名鼎鼎的Ka…
大数据发展到今天,扮演了越来越重要的作用.数据可以为各种组织和企业提供关键决策的支持,也可以通过数据分析帮助发现更多的有价值的东西,如商机.风险等等. 在数据治理工作开展的时候,往往会有一个专门负责数据治理工作的负责人,他和大数据的负责人共同保证数据的可靠性,合法合规性.因为只有这样的数据才是有价值的,这也是很多公司追求的目标:在合规的同时,让数据创造价值. ​ DataHub 是一个强大的工具,可帮助企业完成数据治理的工作.下面让我们从负责人的角度深入了解 DataHub 是如何帮助改善大数据…
本文为微众银行大数据平台:周可在 nMeetup 深圳场的演讲这里文字稿,演讲视频参见:B站 自我介绍下,我是微众银行大数据平台的工程师:周可,今天给大家分享一下 Nebula Graph 在微众银行 WeDataSphere 的实践情况. 先来说下图数据库应用背景. WeDataSphere 图数据库架构是基于 JanusGraph 搭建,正如邸帅在演讲<NebulaGraph - WeDataSphere 开源介绍>中提及的那样,主要用于解决微众银行数据治理中的数据血缘问题.在使用 Jan…
Amundsen的使命,整理有关数据的所有信息,并使其具有普遍适用性. 这是Amundsen官网的一句话,对于元数据的管理工作,复杂且繁琐.可用的工具很多各有千秋,数据血缘做的较好的应该是Apache Atlas,而数据可视化做的较好的应该是Apache Superset.业界一直需要一个可以整合这些功能,让数据治理更加的简单便捷,而这正是Amundsen的使命. 类似于Atlas (Apache),Datahub (LinkedIn).Amundsen主要在于提高数据分析师,数据科学家和数据工…
随着数字化转型的工作推进,数据治理的工作已经被越来越多的公司提上了日程.作为Hadoop生态最紧密的元数据管理与发现工具,Atlas在其中扮演着重要的位置.但是其官方文档不是很丰富,也不够详细.所以整理了这份文档供大家学习使用. 本文档基于Atlas2.1.0版本,整理自部分官网内容,各种博客及实践过程.文章较长,建议收藏.新版本的文档请关注公众号 大数据流动,会持续的更新~ 本文档共分为8个部分,层级结构如下图所示. 文档版权为公众号 大数据流动 所有,请勿商用.相关技术问题以及安装包可以联系…
说到处理大数据的工具,普通的开源解决方案(尤其是Apache Hadoop)堪称中流砥柱.弗雷斯特调研公司的分析师Mike Gualtieri最近预测,在接下来几年,“100%的大公司”会采用Hadoop.Market Research的一份报告预测,到2011年,Hadoop市场会以58%的年复合增长率(CAGR)高速增长:到2020年,市场产值会超过10亿美元.IBM更是非常看好开源大数据工具,派出了3500名研究人员开发Apache Spark,这个工具是Hadoop生态系统的一部分. 这…
微服务架构 微服务的诞生并非偶然,它是在互联网高速发展,技术日新月异的变化以及传统架构无法适应快速变化等多重因素的推动下诞生的产物.互联网时代的产品通常有两类特点:需求变化快和用户群体庞大,在这种情况下,如何从系统架构的角度出发,构建灵活.易扩展的系统,快速应对需求的变化:同时,随着用户的增加,如何保证系统的可伸缩性.高可用性,成为系统架构面临的挑战. 如果还按照以前传统开发模式,开发一个大型而全的系统已经很难满足市场对技术的需求,这时候分而治之的思想被提了出来,于是我们从单独架构发展到分布式架…