基于sklearn的主成分分析代码实现 一.前言及回顾 二.sklearn的PCA类介绍 三.分类结果区域可视化函数 四.10行代码完成葡萄酒数据集分类 五.完整代码 六.总结 基于sklearn的主成分分析代码实现 一.前言及回顾 从上一篇<PCA数据降维原理及python应用(葡萄酒案例分析)>,我们知道,主成分分析PCA是一种无监督数据压缩技术,上一篇逐步自行写代码能够让我更好地理解PCA内部实现机制,那知识熟悉以及技术成熟后我们可以运用什么提高编码效率? 答案就是:基于sklearn的…
最近太忙,又有一段时间没写东西了. pca是机器学习中一个重要的降维技术,是特征提取的代表.关于pca的实现原理,在此不做过多赘述,相关参考书和各大神牛的博客都已经有各种各样的详细介绍. 如需学习相关数学理论,请移驾.T_T 简单说一下pca的实现,首先对于一个矩阵X,我们计算X·XT,显然这个一个半正定矩阵,可以做特征值分解,然后取出k个最大的特征值及其对应的特征向量就可以表达整个原矩阵.若X·XT=p-1Λp,因为p是单位矩阵,所以p-1=pT,即X·XT=p-1·Λ1/2·(p-1·Λ1/…
一.基于Sklearn的PCA代码实现 import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier from sklearn.decomposition import PCA digits =…
在主成分分析(PCA)原理总结中,我们对主成分分析(以下简称PCA)的原理做了总结,下面我们就总结下如何使用scikit-learn工具来进行PCA降维. 1. scikit-learn PCA类介绍 在scikit-learn中,与PCA相关的类都在sklearn.decomposition包中.最常用的PCA类就是sklearn.decomposition.PCA,我们下面主要也会讲解基于这个类的使用的方法. 除了PCA类以外,最常用的PCA相关类还有KernelPCA类,在原理篇我们也讲到…
始终贯彻数据分析的一个大问题就是对数据和结果的展示,我们都知道在低维度下数据处理比较方便,因而数据进行简化成为了一个重要的技术.对数据进行简化的原因: 1.使得数据集更易用使用.2.降低很多算法的计算开销.3.去除噪音.4.使得结果易懂 这里我们关心的数据降维技术为主成分分析(PCA).在PCA中,数据原来的坐标系转换成了新的坐标系,新的坐标系是由数据本身决定的.第一个新的坐标轴的选择是原始数据中方差最大的方向,第二个新的坐标轴的选择和第一个坐标轴正交且具有最大方差方向.这个过程一直重复,重复次…
一步步教你轻松学主成分分析PCA降维算法 (白宁超 2018年10月22日10:14:18) 摘要:主成分分析(英语:Principal components analysis,PCA)是一种分析.简化数据集的技术.主成分分析经常用于减少数据集的维数,同时保持数据集中的对方差贡献最大的特征.常常应用在文本处理.人脸识别.图片识别.自然语言处理等领域.可以做在数据预处理阶段非常重要的一环,本文首先对基本概念进行介绍,然后给出PCA算法思想.流程.优缺点等等.最后通过一个综合案例去实现应用.(本文原…
主成分分析: 降低特征维度的方法. 不会抛弃某一列特征, 而是利用线性代数的计算,将某一维度特征投影到其他维度上去, 尽量小的损失被投影的维度特征 api使用: estimator = PCA(n_components=20) pca_x_train = estimator.fit_transform(x_train) pca_x_test = estimator.transform(x_test) 分别使用支持向量机进行学习降维前后的数据再预测 该数据集源自网上 https://archive…
目录 主成分分析(PCA) 一.维数灾难和降维 二.主成分分析学习目标 三.主成分分析详解 3.1 主成分分析两个条件 3.2 基于最近重构性推导PCA 3.2.1 主成分分析目标函数 3.2.2 主成分分析目标函数优化 3.3 基于最大可分性推导PCA 3.4 核主成分分析(KPCA) 四.主成分分析流程 4.1 输入 4.2 输出 4.3 流程 五.主成分分析优缺点 5.1 优点 5.2 缺点 六.小结 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工…
目录 主成分分析(PCA)——以葡萄酒数据集分类为例 1.认识PCA (1)简介 (2)方法步骤 2.提取主成分 3.主成分方差可视化 4.特征变换 5.数据分类结果 6.完整代码 总结: 1.认识PCA (1)简介 数据降维的一种方法是通过特征提取实现,主成分分析PCA就是一种无监督数据压缩技术,广泛应用于特征提取和降维. 换言之,PCA技术就是在高维数据中寻找最大方差的方向,将这个方向投影到维度更小的新子空间.例如,将原数据向量x,通过构建  维变换矩阵 W,映射到新的k维子空间,通常().…
本文简单整理了以下内容: (一)维数灾难 (二)特征提取--线性方法 1. 主成分分析PCA 2. 独立成分分析ICA 3. 线性判别分析LDA (一)维数灾难(Curse of dimensionality) 维数灾难就是说当样本的维数增加时,若要保持与低维情形下相同的样本密度,所需要的样本数指数型增长.从下面的图可以直观体会一下.当维度很大样本数量少时,无法通过它们学习到有价值的知识:所以需要降维,一方面在损失的信息量可以接受的情况下获得数据的低维表示,增加样本的密度:另一方面也可以达到去噪…