HDU 2588 GCD && GCD问题总结】的更多相关文章

题目链接:hdu 5381 The sum of gcd 将查询离线处理,依照r排序,然后从左向右处理每一个A[i],碰到查询时处理.用线段树维护.每一个节点表示从[l,i]中以l为起始的区间gcd总和.所以每次改动时须要处理[1,i-1]与i的gcd值.可是由于gcd值是递减的,成log级,对于每一个gcd值记录其区间就可以.然后用线段树段改动,可是是改动一个等差数列. #include <cstdio> #include <cstring> #include <vecto…
The sum of gcd Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Total Submission(s): 23    Accepted Submission(s): 4 Problem Description You have an array A,the length of A is n Let f(l,r)=∑ri=l∑rj=igcd(ai,ai+1....a…
题目链接 题意 现有\[x+y=a\\lcm(x,y)=b\]找出满足条件的正整数\(x,y\). \(a\leq 2e5,b\leq 1e9,数据组数12W\). 思路 结论 \(gcd(x,y)=gcd((x+y),lcm(x,y))\) 证明 先证\(gcd(x,y)|gcd((x+y),lcm(x,y))\) 不妨设\(gcd(x,y)=k\),则有\(k\mid x,k\mid y\),则有\(k\mid (x+y)\) -① 又\(k\mid x,x\mid lcm(x,y)\),所…
题意:有一个含n个元素的序列,接下来有q个询问区间,对每个询问区间输出其 f(L,R) 值. 思路: 天真单纯地以为是道超级水题,不管多少个询问,计算量顶多就是O(n2) ,就是暴力穷举每个区间,再直接开个1e8大的int数组保存其结果不就行了?呵呵,限制你内存,看你怎么死!即使给了你这么大的内存,O(n2) 也不容易过,计算量偏大,少一点也许可以. 贴个O(n2)代码. #include <bits/stdc++.h> #define MAX(X,Y) ((X) > (Y) ? (X)…
The sum of gcd Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 641    Accepted Submission(s): 277 Problem Description  You have an array A with the length of $n$ \[Let\quad f(l,r) = \sum_{i = l}…
写诗或者写程序的时候,我们经常要跟欧几里得算法打交道.然而有没要考虑到为什么欧几里得算法是有效且高效的,一些偏激(好吧,请允许我用这个带有浓重个人情感色彩的词汇)的计算机科学家认为,除非程序的正确性在数学上得到了完全严格的证实,否则我们不能认为程序是正确的.既然存在即合理,因此下面我就详细得解说一下欧几里得算法,它为什么是正确的算法(算法过程就不给出了,有了思想,无论是迭代还是循环实现应该都不成问题),为什么有那么好的时间复杂性. 首先还是证明上述命题:注意到证明了该命题就证明了欧几里得算法的正…
一.GCD的基本使用 <1>GCD简介 什么是GCD 全称是Grand Central Dispatch,可译为“牛逼的中枢调度器” 纯C语言,提供了非常多强大的函数   GCD的优势 GCD是苹果公司为多核的并行运算提出的解决方案 GCD会自动利用更多的CPU内核(比如双核.四核) GCD会自动管理线程的生命周期(创建线程.调度任务.销毁线程) 程序员只需要告诉GCD想要执行什么任务,不需要编写任何线程管理代码 <2>GCD的使用 GCD的使用就2个步骤 定制任务 确定想做的事情…
求满足$1<=X<=N ,(X,N)>=M$的个数,其中$N, M (2<=N<=1000000000, 1<=M<=N)$. 首先,假定$(x, n)=m$,那么 $(\frac{x}{n},\frac{n}{m})=1$,故$$ans=\sum_{i=m}^{n}\varphi(\frac{n}{i})$$ ん?遅い! $$\sum_{i=m}^{n}\varphi(\frac{n}{i})=\sum\limits_{d|n}{\varphi(\frac{n}…
题意:给你n(n<=100000)个正整数,求一个连续子序列使序列的所有元素的最大公约数与个数乘积最大 题解:我们知道一个原理就是对于n+1个数与n个数的最大公约数要么相等,要么减小并且减小至少一半(至少少了一个因子) 因此所有子串gcd的总种类数最多只有n*log(a(数字大小))个 我们枚举每个点计算以这个点为结束点的所有后缀,利用dp的思想通过前一次计算的最多log(a)个gcd计算出此时也是最多log(a')个gcd import java.util.Scanner; public cl…
/** 题目:Solve Equation 链接:http://acm.hnust.edu.cn/JudgeOnline/problem.php?id=1643 //最终来源neu oj 2014新生选拔赛题 题意:给定两个数的和以及他们的最小公倍数,求这两个数. 思路: x+y=A lcm(x,y)=B => x*y/gcd(x,y)=B 要把这两个公式联立,那么必须消掉gcd: 设:d = gcd(x,y), x = kx*d, y = ky*d; kx与ky互质: x+y=A => d(…
gcd及扩展gcd可以用来求两个数的最大公因数,扩展gcd甚至可以用来求一次不定方程ax+by=c的解   辗转相除法与gcd 假设有两个数a与b,现在要求a与b的最大公因数,我们可以设 a=b*q+p 如果a是与b的最大公约数是gcd(a,b),那么b与p的最大公约数也是gcd(a,b) 即 gcd(a,b)=gcd(b,p)=gcd(b,a%b),然后我们令a=b,b=a%b,然后再进行以上步骤 以此类推,a与b的值会越来越小,直到某一时刻a变成了b的倍数,使得a%b=0,但是后来赋值使得a…
传送门 •题意 给出两个正整数 a,b: 求解 k ,使得 LCM(a+k,b+k) 最小,如果有多个 k 使得 LCM() 最小,输出最小的k: •思路 时隔很久,又重新做这个题 温故果然可以知新❤ 重要知识点 GCD(a,b)=GCD(a,b-a)=GCD(b,b-a) (b>a) 证明: 设GCD(a,b)=c 则a%c=0,b%c=0,(b-a)%c=0 所以GCD(a,b-a)=c 得GCD(a,b)=GCD(a,b-a) gcd(a+k,b-a)肯定是(b-a)的因子 所以gcd(a…
\[设c=gcd(a,b),那么a可以表示为mc,b可以表示为nc的形式.然后令a=kb+r,那么我们就\\ 只需要证明gcd(b,r)=c即可.{\because}r=a-kb=mc-knc,{\therefore}gcd(b,r)=gcd(nc,mc-knc)\\ =gcd(nc,(m-kn)c),所以我们只需要证gcd(n,m-kn)=1即可.\\ 设n=xd,m-kn=yd,那么m=kn+yd=kxd+yd,进而a=(kx+y)cd,b=xcd\\ ,于是gcd(a,b)就可以表示为gc…
任意门:http://acm.hdu.edu.cn/showproblem.php?pid=2588 GCD Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 3608    Accepted Submission(s): 1954 Problem Description The greatest common divisor GCD(a,…
GCD Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Status Description The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For examp…
题目大意:给定N,M, 求1<=X<=N 且gcd(X,N)>=M的个数. 题解:首先,我们求出数字N的约数,保存在约数表中,然后,对于大于等于M的约数p[i],求出Euler(n/p[i]),累计就是答案.因为对于每一个大于等于m的约数,GCD(N,t*p[i])=p[i]>=m(t与p[i]互质),所以n除以p[i]的欧拉函数的和就是答案. #include <cstdio> int T,cnt,p[10000],n,m,i; int Eular(int n){ i…
输入 N 和 M (2<=N<=1000000000, 1<=M<=N), 找出所有满足1<=X<=N 且 gcd(X,N)>=M 的 X 的数量. Input第一行输入样例数T (T <= 100)每个样例输入两个整数N , M. (2<=N<=1000000000, 1<=M<=N)Output对于每组样例,输出一个整数,表示满足条件的X的数量.Sample Input 3 1 1 10 2 10000 72 Sample Out…
GCD Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 3559    Accepted Submission(s): 1921 Problem Description The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes writ…
GCD(一) 题目: The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6. (a,b) can be easily found by the Euclidean algorithm. Now Carp is conside…
Description The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6. (a,b) can be easily found by the Euclidean algorithm. Now Carp is consid…
题目大意: 求1~N中与N的最大公约数大于M的个数 思路: 这个题是不是可以想到暴力枚举??对于每一组数据枚举与他的最大公约数大于m的数的个数. 是,这种做法没错误,但是保准你T成狗.... 我们至少要找一个不T的做法吧...我们考虑gcd这样一个性质gcd(x,y)=m则gcd(x/m,y/m)=1;我们就可以轻易的发现在这个地方的x/m不就是我们要求的第一个式子中的x吗??这样我们就只需要统计这样的x/m的个数不就好了吗?! 这样显然就可以知道,这不就是欧拉函数吗?! 是的,那我们就来尝试一…
The greatest common divisor GCD(a,b) of two positive integers a and b,sometimes written (a,b),is the largest divisor common to a and b,For example,(1,2)=1,(12,18)=6. (a,b) can be easily found by the Euclidean algorithm. Now Carp is considering a litt…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5869 问你l~r之间的连续序列的gcd种类. 首先固定右端点,预处理gcd不同尽量靠右的位置(此时gcd种类不超过loga[i]种). 预处理gcd如下代码,感觉真的有点巧妙... ; i <= n; ++i) { int x = a[i], y = i; ; j < ans[i - ].size(); ++j) { ][j].first); if(gcd != x) { ans[i].push_…
Uniform Generator Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 29336    Accepted Submission(s): 11694 Problem Description Computer simulations often require random numbers. One way to generat…
题目链接http://acm.hdu.edu.cn/showproblem.php?pid=1695 看了别人的方法才会做 参考博客http://blog.csdn.net/shiren_Bod/article/details/5787722 题意 a,b,c,d,k五个数,a与c可看做恒为1,求在a到b中选一个数x,c到d中选一个数y,使得gcd(x,y)等于k,求x和y有多少对. 首先可以想到选取的必是k的倍数,假设是x和y倍,则x和y一定是互质的在,那么就变成了求1到b/k和1到d/k的之…
The sum of gcd Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Problem Description You have an array A,the length of A is nLet f(l,r)=∑ri=l∑rj=igcd(ai,ai+1....aj)   Input There are multiple test cases. The first li…
题目链接: hdu:http://acm.hdu.edu.cn/showproblem.php?pid=5656 bc:http://bestcoder.hdu.edu.cn/contests/contest_chineseproblem.php?cid=683&pid=1002 CA Loves GCD Accepts: 64    Submissions: 535 Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 262144/2…
King's Cake 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5640 Description It is the king's birthday before the military parade . The ministers prepared a rectangle cake of size n×m(1≤n,m≤10000) . The king plans to cut the cake himself. But he has…
知道对于一个数列,如果以x为左(右)端点,往右走,则最多会有log(a[x])个不同的gcd,并且有递减性 所以会分成log段,每一段的gcd相同 那我们可以预处理出对于每一个位置,以这个位置为左端点和右端点的时候,分别产生的gcd的值和分界处 那么这道题就可以用莫队算法了,O(n * sqrt(n) * logn) 标程是用线段树 代码: //File Name: hdu5381.cpp //Author: long //Mail: 736726758@qq.com //Created Tim…
解题报告:求多个数的最小公倍数,其实还是一样,只需要一个一个求就行了,先将答案初始化为1,然后让这个数依次跟其他的每个数进行求最小公倍数,最后求出来的就是所有的数的最小公倍数.也就是多次GCD. #include<cstdio> #include<iostream> #include<cstring> using namespace std; typedef __int64 INT; INT GCD(INT a,INT b) { ? b:GCD(b,a%b); } in…