Python实现LR(逻辑回归)】的更多相关文章

Python实现LR(逻辑回归) 运行环境 Pyhton3 numpy(科学计算包) matplotlib(画图所需,不画图可不必) 计算过程 st=>start: 开始 e=>end op1=>operation: 读入数据 op2=>operation: 格式化数据 cond=>condition: 达到循环次数 op3=>operation: 梯度上升 op4=>operation: 输出结果 st->op1->op2->cond cond…
逻辑回归--简介 逻辑回归(Logistic Regression)就是这样的一个过程:面对一个回归或者分类问题,建立代价函数,然后通过优化方法迭代求解出最优的模型参数,然后测试验证我们这个求解的模型的好坏.        Logistic回归虽然名字里带"回归",但是它实际上是一种分类方法,主要用于两分类问题(即输出只有两种,分别代表两个类别).        回归模型中,y是一个定性变量,比如y=0或1,logistic方法主要应用于研究某些事件发生的概率. 逻辑回归--优缺点 优…
2014-07-21 10:28:34 首先PO上主要Python代码(2.7), 这个代码在Deep Learning上可以找到. # allocate symbolic variables for the data index = T.lscalar() # index to a [mini]batch x = T.matrix('x') # the data is presented as rasterized images y = T.ivector('y') # the labels…
System.setProperty("hadoop.home.dir", "C:\\hadoop-2.7.2"); val spark = SparkSession.builder().config(new SparkConf().setAppName("LR").setMaster("local[*]")).config("spark.sql.warehouse.dir", "file:///…
http://blog.csdn.net/suipingsp/article/details/41822313…
from sklearn.linear_model import LinearRegression,SGDRegressor,Ridge,LogisticRegression from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.metrics import mean_squared_error,classificatio…
本系列文章用于汇集知识点,查漏补缺,面试找工作之用.数学公式较多,解释较少. 1.假设 2.sigmoid函数: 3.假设的含义: 4.性质: 5.找一个凸损失函数 6.可由最大似然估计推导出 单个样本正确预测的概率为 只是3两个式子合并在一起的表示方法 整个样本空间的概率分布为 取对数展开得, 作为损失函数,并且最小化它,则应改写为5式. 7.求解方法 最原始的方法,梯度下降法 先求导,并带入sigmoid表达式得 之后,参数更新为: 终止条件: 目前指定迭代次数.后续会谈到更多判断收敛和确定…
参考资料(要是对于本文的理解不够透彻,必须将以下博客认知阅读,方可全面了解LR): (1).https://zhuanlan.zhihu.com/p/74874291 (2).逻辑回归与交叉熵 (3).https://www.cnblogs.com/pinard/p/6029432.html (4).https://zhuanlan.zhihu.com/p/76563562 (5).https://www.cnblogs.com/ModifyRong/p/7739955.html 一.逻辑回归介…
六 逻辑回归(Logistic Regression:LR) 逻辑回归(Logistic Regression, LR)模型其实仅在线性回归的基础上,套用了一个逻辑函数,但也就是由于这个逻辑函数,使得逻辑回归模型成为了机器学习领域一颗耀眼的明星,更是计算广告学的核心. 6.1 分类问题(Classification) 本小节开始介绍分类问题(该问题中要预测的变量y是离散值),同时,还要学习一种叫做逻辑回归的算法(Logistic regression),这是目前使用最广泛的一种算法.虽然该算法中…
from : http://blog.csdn.net/lsldd/article/details/41551797 在本系列文章中提到过用Python开始机器学习(3:数据拟合与广义线性回归)中提到过回归算法来进行数值预测.逻辑回归算法本质还是回归,只是其引入了逻辑函数来帮助其分类.实践发现,逻辑回归在文本分类领域表现的也很优秀.现在让我们来一探究竟. 1.逻辑函数 假设数据集有n个独立的特征,x1到xn为样本的n个特征.常规的回归算法的目标是拟合出一个多项式函数,使得预测值与真实值的误差最小…