tarjan求割点与割边】的更多相关文章

tarjan求割点与割边 洛谷P3388 [模板]割点(割顶) 割点 解题思路: 求割点和割点数量模版,对于(u,v)如果low[v]>=dfn[u]那么u为割点,特判根结点,若根结点子树有超过一颗子树,说明根也是割点 #include<bits/stdc++.h> using namespace std; /* freopen("k.in", "r", stdin); freopen("k.out", "w"…
#1183 : 连通性一·割边与割点 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 还记得上次小Hi和小Ho学校被黑客攻击的事情么,那一次攻击最后造成了学校网络数据的丢失.为了避免再次出现这样的情况,学校决定对校园网络进行重新设计. 学校现在一共拥有N台服务器(编号1..N)以及M条连接,保证了任意两台服务器之间都能够通过连接直接或者间接的数据通讯. 当发生黑客攻击时,学校会立刻切断网络中的一条连接或是立刻关闭一台服务器,使得整个网络被隔离成两个独立的部分. 举个…
前言:\(Tarjan\) 求割点和割边建立在 \(Tarjan\)算法的基础之上,因此建议在看这篇博客之前先去学一学\(Tarjan\). 回顾\(Tarjan\)中各个数组的定义 首先,我们来回顾一下\(Tarjan\)中各个数组的定义: \(dfn[\) \(]\):每个点的\(dfs\)序. \(low[\) \(]\):每个点能到达的\(dfs\)序最小的节点的\(dfs\)序. 而其他数组在求割点和割边的过程中则不太必要了. 割点 首先,我们要了解一下割点的定义:把这个点去掉之后,这…
Tarjan 强连通分量 及 双联通分量(求割点,割边) 众所周知,Tarjan的三大算法分别为 (1)         有向图的强联通分量 (2)         无向图的双联通分量(求割点,桥) (3)         最近公共祖先 今天主要给未来的自己讲解一下前两个应用,让未来的自己不会向现在的自己一样又忘了Tarjan怎么写.熟悉DFS的话,理解起来会简单很多. (1)         有向图的强联通分量 首先解释Tarjan中几个比较重要的值 DFN[i] : 节点i被访问到的次序 L…
这个文章的思路是按照这里来的.这里讨论的都是无向图.应该有向图也差不多. 1.如何求割点 首先来看求割点.割点必须满足去掉其以后,图被分割.tarjan算法考虑了两个: 根节点如果有两颗及以上子树,它就是割点.因为它没有父亲了(可怜的点). 对于有父亲的普通的结点a,如果它递归树的子树中,有任意节点b的low[b]>=dfn[a],那么它就是割点,反之则不是割点. 如果\(low[b]>=dfn[a]\),a一定是割点.因为\(low[b]>=dfn[a]\)说明有在b这个子树中,里面所…
poj_1144Network(tarjan求割点) 标签: tarjan 割点割边模板 题目链接 Network Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 12356 Accepted: 5688 Description A Telephone Line Company (TLC) is establishing a new telephone cable network. They are connecting se…
所谓割点(顶)割边,我们引进一个概念 割点:删掉它之后(删掉所有跟它相连的边),图必然会分裂成两个或两个以上的子图. 割边(桥):删掉一条边后,图必然会分裂成两个或两个以上的子图,又称桥. 这样大家就应该能简单理解(怎么可能)割点割边了. 所以我们再来看一个图 这样大家就能明白了吧(明白是明白了,但是要他干嘛(自动忽略))到后面会明白的. 然后怎么求,这是一个问题,直接想法是搜索,枚举每一个点,然后再去检验是否联通,这样的复杂度应该是O(n2),很显然很不优秀,万一数据是1e5以上不就凉凉了吗.…
Network Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 17016   Accepted: 7635 Description A Telephone Line Company (TLC) is establishing a new telephone cable network. They are connecting several places numbered by integers from 1 to N…
by szTom 前置知识 邻接表存储及遍历图 tarjan求强连通分量 割点 割点的定义 在一个无向图中,如果有一个顶点集合,删除这个顶点集合以及这个集合中所有顶点相关联的边以后,图的连通分量增多,就称这个点集为割点集合. 也就是说,就是有个点维持着连通分量的继续,去掉那个点,这个连通分量就无法在维持下去,分成好几个连通分量. 比如说,下图中 蓝色的点就是割点. tarjan求割点 前向边 首先,先了解什么是前向边: 将这个无向图按树排列,从子节点到其祖先的边为前向边. 即为 \(low[x]…
Tarjan算法. 1.若u为根,且度大于1,则为割点 2.若u不为根,如果low[v]>=dfn[u],则u为割点(出现重边时可能导致等号,要判重边) 3.若low[v]>dfn[u],则边(u,v)为桥(封死在子树内),不操作. 求割点时,枚举所有与当前点u相连的点v: 1.是重边: 忽略 2.是树边: Tarjan(v),更新low[u]=min(low[u],low[v]); 子树个数cnt+1.如果low[v] >= dfn[u],说明是割点,割点数+1 3.是回边: 更新lo…