Purpose: characterize the evolution of dynamical systems. In this paper, a novel method based on epsilon-recurrence networks is proposed for the study of the evolution properties of dynamical systems. Methodology: 1. convert time series to a high-dim…
Problem: the important frequency information is lack of effective modelling. ?? what is frequency information in time series? and why other models don't model this kind of frequency information? frequency learning we propose two deep learning models:…
LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION Wed 21st Dec 2016   Neural Networks these days are the "go to" thing when talking about new fads in machine learning. As such, there's a plethora of courses and tutorials out there on the basic vani…
LSTM Neural Network for Time Series Prediction Wed 21st Dec 2016 Neural Networks these days are the “go to” thing when talking about new fads in machine learning. As such, there’s a plethora of courses and tutorials out there on the basic vanilla neu…
ReNet: A Recurrent Neural Network Based Alternative to Convolutional Networks2018-03-05  11:13:05   1. 引言: 本文尝试用 基于四个方向的 RNN 来替换掉 CNN中的 convolutional layer(即:卷积+Pooling 的组合).通过在前一层的 feature 上进行四个方向的扫描,完成特征学习的过程. The recurrent layer ensures that each…
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! Abstract: 在深度学习的最新进展的启发下,我们提出了一种基于卷积神经网络(CNN)的视频压缩框架DeepCoder.我们分别对预测信号和残差信号应用独立的CNN网络.采用标量量化和哈夫曼编码将量化后的特征映射编码为二进制流.本文采用固定的32×32块来证明我们的想法,并与已知的H.264/AVC视频编码标准进行了性能比较,具有可比较的率失真性能.这里使用结构相似性(SSIM)来测量失真,因为它更接近感知响应. I. INTRO…
目录 摘要 一.引言 二.相关工作 基于视图和体素的方法 点云上的深度学习 相关性学习 三.形状意识表示学习 3.1关系-形状卷积 建模 经典CNN的局限性 变换:从关系中学习 通道提升映射 3.2性质 置换不变性 对刚性变换鲁棒 点相互作用 权重共享 3.3再讨论2D网格卷积 3.4用于点云分析的RS-CNN 3.5应用细节 四.实验 4.1点云分析 形状分类 形状部件分割 法向量估计 4.2 RS-CNN设计分析 消融研究 聚合函数A 映射函数M 低级关系h 点置换和刚性变换的鲁棒性 4.3…
论文地址:https://dl.acm.org/doi/abs/10.1145/3330393.3330399 基于深度神经网络的回声消除回归方法 摘要 声学回声消除器(AEC)的目的是消除近端传声器接收到的混合信号中的声学回声.传统的方法是使用自适应有限脉冲响应(FIR)滤波器来识别房间脉冲响应(RIR),因为房间脉冲响应对各种野外场景都不具有鲁棒性.在本文中,我们提出了一种基于深度神经网络的回归方法,从近端和远端混合信号中提取的特征直接估计近端目标信号的幅值谱.利用深度学习强大的建模和泛化能…
论文地址:http://www.interspeech2020.org/uploadfile/pdf/Thu-1-10-5.pdf 基于GAN的回声消除 摘要 生成对抗网络(GANs)已成为语音增强(如噪声抑制)中的热门研究主题.通过在对抗性场景中训练噪声抑制算法,基于GAN的解决方案通常会产生良好的性能.在本文中,提出了卷积循环GAN架构(CRGAN-EC),以解决线性和非线性回声情况.所提出的体系结构在频域中进行了训练,并预测了目标语音的时频(TF)掩码.部署了几种度量损失函数,并研究了它们…
Problem: time series prediction The nonlinear autoregressive exogenous model: The Nonlinear autoregressive exogenous (NARX) model, which predicts the current value of a time series based upon its previous values as well as the current and past values…