简单实现计算Edit Distance算法】的更多相关文章

最近因为工作需要,学习了NLP的相关知识,简单动手实现了一下计算Edit Distance的算法,就是计算一个字符串要变成另一个字符串需要的代价,这其中采用Levenshtein方式,即规定一个插入和一个删除的代价是1,一次替换的代价是2. 简单的逻辑: 对于长度为M的字符串X,长度为N的字符串Y, Initialization: D(i,0)=i D(0,j)=j Recurrence Relation: for each i=1...M for each j=1...N D(i,j)=Min…
Levenshtein Distance 算法,又叫 Edit Distance 算法,是指两个字符串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符.一般来说,编辑距离越小,两个串的相似度越大. 算法实现原理图解: a.首先是有两个字符串,这里写一个简单的 abc 和 abe b.将字符串想象成下面的结构. A 处 是一个标记,为了方便讲解,不是这个表的内容.   abc a b c abe 0 1 2 3 a 1 A处  …
Levenshtein Distance 算法,又叫 Edit Distance 算法,是指两个字符串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符.一般来说,编辑距离越小,两个串的相似度越大. 算法实现原理图解: a.首先是有两个字符串,这里写一个简单的 abc 和 abe b.将字符串想象成下面的结构. A 处 是一个标记,为了方便讲解,不是这个表的内容.   abc a b c abe 0 1 2 3 a 1 A处  …
利用编辑距离(Edit Distance)计算两个字符串的相似度 编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符.一般来说,编辑距离越小,两个串的相似度越大. 例如将kitten一字转成sitting: sitten (k→s)        sittin (e→i)        sitting (→g) 俄罗斯科学家Vladimir Le…
I. 最小编辑距离的定义 最小编辑距离旨在定义两个字符串之间的相似度(word similarity).定义相似度可以用于拼写纠错,计算生物学上的序列比对,机器翻译,信息提取,语音识别等. 编辑距离就是指将一个字符串通过的包括插入(insertion),删除(deletion),替换(substitution)的编辑操作转变为另一个字符串所需的最少编辑次数.比如: 如果将编辑操作从字符放大到词,那就可以用于评估集齐翻译和语音识别的效果.比如: 还可以用于实体名称识别(named entity r…
最小编辑距离的定义:编辑距离(Edit Distance),又称Levenshtein距离.是指两个字串之间,由一个转成还有一个所需的最少编辑操作次数.许可的编辑操作包含将一个字符替换成还有一个字符.插入一个字符,删除一个字符. 比如将kitten一字转成sitting: sitten(k→s) sittin(e→i) sitting(→g) 年提出这个概念. Thewords `computer' and `commuter' are very similar, and a change of…
Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.) You have the following 3 operations permitted on a word: a) Insert a characterb) Delete a characterc) Replace…
编辑距离 编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符.一般来说,编辑距离越小,两个串的相似度越大.例如将kitten一字转成sitting:sitten (k→s)sittin (e→i)sitting (→g)俄罗斯科学家Vladimir Levenshtein在1965年提出这个概念. 应用 最小编辑距离通常作为一种相似度计算函数被用…
编辑距离 在计算机科学中,编辑距离是一种量化两个字符串差异程度的方法,也就是计算从一个字符串转换成另外一个字符串所需要的最少操作步骤.不同的编辑距离中定义了不同操作的集合.比较常用的莱温斯坦距离(Levenshtein distance)中定义了:删除.插入.替换操作. 算法描述 定义edit(i, j),表示第一个字符串的长度为i的子串到第二个字符串长度为j的子串的编辑距离. 如果用递归的算法,自顶向下依次简化问题: if (i < 0 && j < 0), edit(i,…
http://blog.csdn.net/abcjennifer/article/details/7735272 自然语言处理(NLP)中,有一个基本问题就是求两个字符串的minimal Edit Distance, 也称Levenshtein distance.受到一篇Edit Distance介绍文章的启发,本文用动态规划求取了两个字符串之间的minimal Edit Distance. 动态规划方程将在下文进行讲解. 简单地说,就是仅通过插入(insert).删除(delete)和替换(s…
Min Edit Distance ----两字符串之间的最小距离 PPT原稿参见Stanford:http://www.stanford.edu/class/cs124/lec/med.pdf Tips:由于本人水平有限,对MED的个人理解可能有纰漏之处,请勿尽信. Edit:个人理解指编辑之意,也即对于两个字符串,对其中的一个进行各种编辑操作(插入.删除.替换)使其变为另一个字符串.要解决的问题是求出最小的编辑操作次数是多少. 基因系列比对 定义距离: X,Y是大小分别为n,m的字符串. 定…
Given two strings S and T, determine if they are both one edit distance apart. Example Given s = "aDb", t = "adb" return true 思维惯性造成上来就想call Edit Distance的算法 然后看需要改多少步 后来想想这个问题“One”很特殊 要好好利用 才发现简单的string compare就可以解决 最后判断前面的字符全部相等的情况,此…
自然语言处理中,一个很重要的应用就是问答系统,这里面,涉及到问题和知识库里面的问题的匹配度,从而检索出问题的答案,这个是一个比较常见的应用算法. 编辑距离(Edit Distance),又称Levenshtein距离(即莱文斯坦距离,LD算法),是指两个字串之间,由一个转成另一个所需的最少编辑操作次数. 许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符.一般来说,编辑距离越小,两个串的相似度越大. 该算法由俄罗斯科学家Vladimir Levenshtein于1965年提…
本文已授权 [Coding博客](https://blog.coding.net) 转载 前言 Edit Distance,中文叫做编辑距离,在文本处理等领域是一个重要的问题,以下是摘自于百度百科的定义 编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符. 分别用R(replace),I(insert),D(delete),M(Match)代表替…
Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.) You have the following 3 operations permitted on a word: a) Insert a character b) Delete a char…
Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2. You have the following 3 operations permitted on a word: Insert a character Delete a character Replace a character Example 1: Input: word1 = "h…
一.问题描述定义字符串编辑距离(Edit Distance),是俄罗斯科学家 Vladimir Levenshtein 在 1965 年提出的概念,又称 Levenshtein 距离,是指两个字符串之间,由一个转变成另一个所需的最少编辑操作次数.许可的编辑操作包括: 将一个字符替换成另一个字符插入一个字符删除一个字符应用1. DNA分析:基因学的一个主要主题就是比较DNA序列并尝试找出这两个序列的公共部分.如果两个DNA序列有类似的公共子序列,那么这两个序列很可能是同源的,在比对两个序列时,不仅…
一.题目说明 题目72. Edit Distance,计算将word1转换为word2最少需要的操作.操作包含:插入一个字符,删除一个字符,替换一个字符.本题难度为Hard! 二.我的解答 这个题目一点思路也没,就直接看答案了.用的还是dp算法,dp[n1+1][n2+1]中的dp[i][j]表示将word1的前i位,变为word2的前j位需要的步骤.注意第1行是空,第1列也是空. 1.第一行中,dp[0][i]表示空字符""到word2[0,...,i]需要编辑几次 2.第一列中,d…
Magic Number Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit Status Practice HDU 4323 Description There are many magic numbers whose lengths are less than 10. Given some queries, each contains a single number, if t…
sam格式很精炼,几乎包含了比对的所有信息,我们平常用到的信息很少,但特殊情况下,我们会用到一些较为生僻的信息,关于这些信息sam官方文档的介绍比较精简,直接看估计很难看懂. 今天要介绍的是如何通过bam文件统计比对的indel和mismatch信息 首先要介绍一个非常重要的概念--编辑距离 定义:从字符串a变到字符串b,所需要的最少的操作步骤(插入,删除,更改)为两个字符串之间的编辑距离. (2016年11月17日:增加,有点误导,如果一个插入有两个字符,那编辑距离变了几呢?1还是2?我又验证…
[-] 三角函数计算Cordic 算法入门 从二分查找法说起 减少乘法运算 消除乘法运算 三角函数计算,Cordic 算法入门 三角函数的计算是个复杂的主题,有计算机之前,人们通常通过查找三角函数表来计算任意角度的三角函数的值.这种表格在人们刚刚产生三角函数的概念的时候就已经有了,它们通常是通过从已知值(比如sin(π/2)=1)开始并重复应用半角和和差公式而生成. 现在有了计算机,三角函数表便推出了历史的舞台.但是像我这样的喜欢刨根问底的人,不禁要问计算机又是如何计算三角函数值的呢.最容易想到…
题目: Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.) You have the following 3 operations permitted on a word: a) Insert a characterb) Delete a characterc) Rep…
由于最近要使用atan2函数,但是时间上消耗比较多,因而网上搜了一下简化的算法. 原帖地址:http://blog.csdn.net/liyuanbhu/article/details/8458769 三角函数计算,Cordic 算法入门 三角函数的计算是个复杂的主题,有计算机之前,人们通常通过查找三角函数表来计算任意角度的三角函数的值.这种表格在人们刚刚产生三角函数的概念的时候就已经有了,它们通常是通过从已知值(比如sin(π/2)=1)开始并重复应用半角和和差公式而生成. 现在有了计算机,三…
Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.) You have the following 3 operations permitted on a word: a) Insert a characterb) Delete a chara…
1. N-Queens The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other. Given an integer n, return all distinct solutions to the n-queens puzzle. Each solution contains a distinct board confi…
题目描述Edit DistanceGiven two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)You have the following 3 operations permitted on a word:     a) Insert a character     b) Del…
Leetcode之动态规划(DP)专题-72. 编辑距离(Edit Distance) 给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 . 你可以对一个单词进行如下三种操作: 插入一个字符 删除一个字符 替换一个字符 示例 1: 输入: word1 = "horse", word2 = "ros" 输出: 3 解释: horse -> rorse (将 'h' 替换为 'r') rorse -> r…
编辑距离(Minimum Edit Distance,MED),也叫 Levenshtein Distance.他的含义是计算字符串a转换为字符串b的最少单字符编辑次数.编辑操作有:插入.删除.替换(都是对a进行的变换).用lev(i, j) 表示 a的前i个单词和 b的前j个单词的最短编辑距离(即从后往前).可以分为以下几种情况: i == 0 或 j == 0 \(lev(i, j) = max(i, j)\) i,j 不为0, 且 \(a[i] == a[j]\) \(lev(i, j)…
Given two strings S and T, determine if they are both one edit distance apart. 这道题是之前那道Edit Distance的拓展,然而这道题并没有那道题难,这道题只让我们判断两个字符串的编辑距离是否为1,那么我们只需分下列三种情况来考虑就行了: 1. 两个字符串的长度之差大于1,那么直接返回False 2. 两个字符串的长度之差等于1,那么长的那个字符串去掉一个字符,剩下的应该和短的字符串相同 3. 两个字符串的长度之…
Edit Distance Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.) You have the following 3 operations permitted on a word: a) Insert a characterb) Delete a chara…