算法应用杂谈-xgboost的偏差】的更多相关文章

一个小样本的cvr 估计问题中, 考虑用xgboost 模型. 发现结果的估计偏差很大. 仔细研究后, 发现现象: 迭代步数不多, 一般3,5步就停了. 预测的分数偏差很大, 分布不匀. pcoc很大. 注: pcoc = 分数均值/ 正样本占比 - 1 类似的参数用 lightgbm跑则比较正确. 仔细分析发现是因为迭代不够充分情况下, 会产生这个问题. 可以通过一个参数调整解决, 方法为: 将base_score 设置为 正样本占比, 可以解决偏差大的问题. 但auc 可能变低, 需要相应的…
1 引言 深度学习目前已经应用到了各个领域,应用场景大体分为三类:物体识别,目标检测,自然语言处理.本文着重与分析目标检测领域的深度学习方法,对其中的经典模型框架进行深入分析. 目标检测可以理解为是物体识别和物体定位的综合,不仅仅要识别出物体属于哪个分类,更重要的是得到物体在图片中的具体位置. 为了完成这两个任务,目标检测模型分为两类.一类是two-stage,将物体识别和物体定位分为两个步骤,分别完成,这一类的典型代表是R-CNN, fast R-CNN, faster-RCNN家族.他们识别…
首先感谢吴恩达老师的免费公开课,以下图片均来自于Andrew Ng的公开课 指数加权平均法 在统计学中被称为指数加权移动平均法,来看下面一个例子: 这是伦敦在一些天数中的气温分布图 Vt = βVt-1 + (1 - β)θt  β指的是加权系数 0<β<1 θt 指的是当前时刻的温度 当β=0.9的时候 1/1-β = 10 所以看到上图的红线其实就是考虑了10天之内的平均气温,其拟合度较好 当β=0.98的时候 1/1-β = 50 所以上图中的绿线是考虑了50天之内的平均气温,于是这种平…
集成学习 集成算法 随机森林(前身是bagging或者随机抽样)(并行算法) 提升算法(Boosting算法) GBDT(迭代决策树) (串行算法) Adaboost (串行算法) Stacking ———————————————————————————————————————————— 集成算法  集成学习的思想是将若干个学习器(分类器&回归器)组合之后产生一个新学习器. 弱分类器(weaklearner)指那些分类准确率只稍微好于随机猜测的分类器(准确率稍大于百分之50,可以是之前学过的逻辑…
绘制学习曲线非常有用,比如你想检查你的学习算法,运行是否正常.或者你希望改进算法的表现或效果.那么学习曲线就是一种很好的工具.学习曲线可以判断某一个学习算法,是偏差.方差问题,或是二者皆有. 为了绘制一条学习曲线,通常先绘制出训练集数据的平均误差平方和(Jtrain),或者交叉验证集数据的平均误差平方和(Jcv).将其绘制成一个关于参数m的函数.也就是一个关于训练集.样本总数的函数.m一般是一个常数,比如m等于100,表示100组训练样本.但我们要自己取一些m的值,也就是说对m的取值做一点限制,…
在两年半之前作过梯度提升树(GBDT)原理小结,但是对GBDT的算法库XGBoost没有单独拿出来分析.虽然XGBoost是GBDT的一种高效实现,但是里面也加入了很多独有的思路和方法,值得单独讲一讲.因此讨论的时候,我会重点分析和GBDT不同的地方. 本文主要参考了XGBoost的论文和陈天奇的PPT. 1. 从GBDT到XGBoost 作为GBDT的高效实现,XGBoost是一个上限特别高的算法,因此在算法竞赛中比较受欢迎.简单来说,对比原算法GBDT,XGBoost主要从下面三个方面做了优…
集成算法思想: Xgboost基本原理: Xboost中是一个树(函数)接着一个树(函数)往里加,每加一个树都希望整体表达效果更好一些,即:目标函数逐步减小. 每加入一个函数,使目标函数逐渐减小,整体表达效果提升. xgboost目标函数推导:…
目录 XgBoost算法 一.XgBoost算法学习目标 二.XgBoost算法详解 2.1 XgBoost算法参数 2.2 XgBoost算法目标函数 2.3 XgBoost算法正则化项 2.4 XgBoost算法最小化目标函数 2.5 XgBoost算法举例 三.XgBoost算法优缺点 3.1 优点 3.2 缺点 四.小结 更新.更全的<机器学习>的更新网站,更有python.go.数据结构与算法.爬虫.人工智能教学等着你:https://www.cnblogs.com/nickchen…
 sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share adaboost(adaptive boost) bootsting is a fairly simple variation on bagging…
转载地址:https://blog.csdn.net/u014248127/article/details/79015803 RF,GBDT,XGBoost,lightGBM都属于集成学习(Ensemble Learning),集成学习的目的是通过结合多个基学习器的预测结果来改善基本学习器的泛化能力和鲁棒性. 根据基本学习器的生成方式,目前的集成学习方法大致分为两大类:即基本学习器之间存在强依赖关系.必须串行生成的序列化方法,以及基本学习器间不存在强依赖关系.可同时生成的并行化方法:前者的代表就…