Spark 1.60的executor schedule】的更多相关文章

第一次看源码还是Spark 1.02.这次看新源码发现调度方式有了一些新的特征,在这里随便写一下. 不变的是,master还是接收Appclient和worker的消息,并且在接收RegisterApplication等消息后会执行一遍schedule().schedule()依旧会先找到空闲的worker用以执行waitingDrivers.但是调度Executor的方式有了一点变化. private def startExecutorsOnWorkers(): Unit = { // Rig…
问题描述与分析 题目中的问题大致可以描述为: 由于某个 Executor 没有按时向 Driver 发送心跳,而被 Driver 判断该 Executor 已挂掉,此时 Driver 要把 该 Executor 上执行的任务发送给另外一个 Executor 重新执行: 默认等待时长为 spark.network.timeout=120s 完整报错大概如下 17/01/13 09:13:08 WARN spark.HeartbeatReceiver: Removing executor 5 wit…
当用户应用new SparkContext后,集群就会为在Worker上分配executor,那么这个过程是什么呢?本文以Standalone的Cluster为例,详细的阐述这个过程.序列图如下: 1. SparkContext创建TaskScheduler和DAG Scheduler SparkContext是用户应用和Spark集群的交换的主要接口,用户应用一般首先要创建它.如果你使用SparkShell,你不必自己显式去创建它,系统会自动创建一个名字为sc的SparkContext的实例.…
spark动态资源调整其实也就是说的executor数目支持动态增减,动态增减是根据spark应用的实际负载情况来决定. 开启动态资源调整需要(on yarn情况下) 1.将spark.dynamicAllocation.enabled设置为true.意思就是启动动态资源功能 2.将spark.shuffle.service.enabled设置为true. 在每个nodeManager上设置外部shuffle服务 2.1 将spark-<version>-yarn-shuffle.jar拷贝到…
问题: 用  spark-submit --master yarn --deploy-mode cluster --driver-memory 2G --num-executors 6 --executor-memory 2G ~~~ 提交任务时,最后一个executor 执行时间 超过了 160s 导致 timeout而退出,造成任务重新执行造成用时过长.具体请看下面介绍: // :: WARN spark.HeartbeatReceiver: Removing executor with n…
ExecutorBackend 很简单的接口 package org.apache.spark.executor /** * A pluggable interface used by the Executor to send updates to the cluster scheduler. */ private[spark] trait ExecutorBackend { def statusUpdate(taskId: Long, state: TaskState, data: ByteB…
https://spark.apache.org/docs/1.2.1/tuning.html Data Serialization 数据序列化,对于任意分布式系统都是性能的关键点 Spark默认使用Java serialization,这个比较低效 推荐使用,Kryo serialization,会比Java序列化,更快更小, Spark使用Twitter chill library(Kryo的scala扩展) conf.set("spark.serializer", "o…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Spark编程模型 1.1 术语定义 l应用程序(Application): 基于Spark的用户程序,包含了一个Driver Program 和集群中多个的Executor: l驱动程序(Driver Program):运行Application的main()函数并且创建SparkContext,通常用SparkContext代表Driver Program: l执行单元(Executor):…
Spark版本:1.1.0 本文系以开源中国社区的译文为基础,结合官方文档翻译修订而来,转载请注明以下链接: http://www.cnblogs.com/zhangningbo/p/4117981.html http://www.oschina.net/translate/spark-tuning 目录 数据序列化 内存优化 确定内存消耗 优化数据结构 序列化RDD存储 优化内存回收 其他考虑因素 并行度 Reduce任务的内存用量 广播”大变量“ 总结 因为大多数Spark程序都具有“内存计…
引言 上一小节<TaskScheduler源代码与任务提交原理浅析2>介绍了Driver側将Stage进行划分.依据Executor闲置情况分发任务,终于通过DriverActor向executorActor发送任务消息. 我们要了解Executor的运行机制首先要了解Executor在Driver側的注冊过程.这篇文章先了解一下Application和Executor的注冊过程. 1. Task类及其相关 1.1 Task类 Spark将由Executor运行的Task分为ShuffleMa…