BZOJ 1426--收集邮票(概率与期望&DP)】的更多相关文章

1426: 收集邮票 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 261  Solved: 209[Submit][Status][Discuss] Description 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n.但是由于凡凡也很喜欢邮票,所以皮皮购买第k张邮票需要支付k元钱. 现在皮皮手中没有邮票,皮皮想知道自己得到所有种类…
1426: 收集邮票 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 504  Solved: 417[Submit][Status][Discuss] Description 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n.但是由于凡凡也很喜欢邮票,所以皮皮购买第k张邮票需要支付k元钱. 现在皮皮手中没有邮票,皮皮想知道自己得到所有种类…
$f(i)$表示现在有$i$张,买到$n$张的期望 所以$f(i)=f(i+1)+\frac {n}{n-i}$ 费用提前计算,每张邮票看做一元,然后使后面每一张加1元 $g(i)$表示当前为$i$张期望到$n$张时花掉的钱. 那么$g(i)=g(i+1)+f(i+1)+\frac{i}{n-i}f(i)+\frac{n}{n-i}$ 递推即可 #include <cstdio> #include <cstring> #include <iostream> #inclu…
Description 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且 买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n.但是由于凡凡也很喜欢邮票,所以皮皮购买第k 张邮票需要支付k元钱.现在皮皮手中没有邮票,皮皮想知道自己得到所有种类的邮票需要花费的钱数目的期望. Input 一行,一个数字N,  N<=10000 Output 要付出多少钱. 保留二位小数 题解: 挺神的一道期望 $DP$. 令 $f_{i}$ 表示已经有 $…
传送门 题意: 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n.但是由于凡凡也很喜欢邮票,所以皮皮购买第k张邮票需要支付k元钱. 现在皮皮手中没有邮票,皮皮想知道自己得到所有种类的邮票需要花费的钱数目的期望. 想了好几天了 一开始想求期望次数再套上等差数列,然后一直$WA$ 其实应该再求长度平方的期望,就因为变量平方的期望想了好几天 非常感谢SD_le大爷的帮助 先说怎么求期望次数…
我太菜了,看的hzwer的blog才懂 大概是设f[i]表示已经拥有了i张邮票后期望还要买的邮票数,这个转移比较简单是f[i]=f[i]*(i/n)+f[i+1]*((n-i)/n)+1 然后设g[i]为还需要的钱,可以把转移看做每张票都比前面的贵1元,就是g[i]=((n-i)/n)*(g[i+1]+f[i+1])+(i/n)*(g[i]+f[i])+1 #include<iostream> #include<cstdio> using namespace std; const…
显然如果收集了k天,ans=k*(k+1)/2=(k^2+k)/2.那么现在要求的就是这个东西的期望. 设f[i]表示已有i张邮票,收集到n张的期望次数,g[i]表示已有i张邮票,收集到n张的次数的平方的期望. 显然i这个点有 $\frac{i}{n}$ 的概率走自环,有 $\frac{n-i}{n}$ 的概率走到i+1这个点. SO $$f[i]=(\frac{i}{n})\times(f[i]+1)+(\frac{n-i}{n})\times(f[i+1]+1)$$ 以前一直不懂平方的期望是…
f[i]:当前已拥有i种邮票,还需要买的邮票数的期望值. g[i]:当前已拥有i种邮票,还需要的钱的期望值. 每张邮票初始都是1元钱,每买一张邮票,还没购买的邮票每张都涨价1元.  f[i]=1+(n-i)/n*f[i+1]+i/n*f[i] --->>f[i]=f[i+1]+n/(n-i) g[i]=1+(n-i)/n*(g[i+1]+f[i+1])+i/n*(g[i]+f[i])--->>g[i]=f[i+1]+i/(n-i)*f[i]+g[i+1]+n/(n-i); #inc…
收集邮票 (概率dp) 题目描述 有 \(n\) 种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是 \(n\) 种邮票中的哪一种是等概率的,概率均为 \(\frac{1}{n}\) .但是由于凡凡也很喜欢邮票,所以皮皮购买第 \(k\) 张邮票需要支付 \(k\) 元钱. 现在皮皮手中没有邮票,皮皮想知道自己得到所有种类的邮票需要花费的钱数目的期望. 输入格式 一行,一个数字 \(N,N\leqslant 10000\) 输出格式…
本文学习自 Sengxian 学长的博客 之前也在CF上写了一些概率DP的题并做过总结 建议阅读完本文再去接着阅读这篇文章:Here 前言 单纯只用到概率的题并不是很多,从现有的 OI/ACM 比赛中来看,大多数题目需要概率与期望结合起来(期望就是用概率定义的),所以本文主要讲述期望 DP. 期望 DP 有一些固定的方法,这里分多种方法来讲述. 讲解 例一 #3036. 绿豆蛙的归宿 题意: 给定一个起点为 \(1\),终点为 \(n\) 的有向无环图.到达每一个顶点时,如果有 \(K\) 条离…
4008: [HNOI2015]亚瑟王 Time Limit: 20 Sec  Memory Limit: 512 MBSec  Special JudgeSubmit: 832  Solved: 515[Submit][Status][Discuss] Description 小 K 不慎被 LL 邪教洗脑了,洗脑程度深到他甚至想要从亚瑟王邪教中脱坑. 他决定,在脱坑之前,最后再来打一盘亚瑟王.既然是最后一战,就一定要打得漂亮.众所周知,亚瑟王是一个看脸的游戏,技能的发动都是看概率的.作为一个…
概率和期望dp 概率和期望好神啊,完全不会. 网上说概率要顺着推,期望要逆着推,然而我目前做的概率期望题正好都与此相反2333   概率: 关于概率:他非常健康 初中概率题非常恐怖.现在来思考一道题:中国放弃参加IOI2018的概率是多少?理性的回答:趋近于0:asuldb的回答:和他NOIP AK的概率差不多:按照初中的观点:1/2(有可能放弃,有可能不放弃),所以他有挺大的可能AK NOIP啦. 有一次期中考试做过一道题:小明的班里有3/4的人学数学,1/4人学英语,问小明学数学的概率是多少…
[题目]F. Strongly Connected Tournament [题意]给定n个点(游戏者),每轮游戏进行下列操作: 1.每对游戏者i和j(i<j)进行一场游戏,有p的概率i赢j(反之j赢i),连边从赢者向输者,从而得到一个有向完全图. 2.对于其中点数>1的强连通分量再次进行过程1,直至不存在点数>1的强连通分量为止. 给定n和p,求游戏总场次的期望.2<=n<=2000. [算法]数学概率,期望DP [题解]答案只和点数有关,设ans(n)表示n个点游戏总场次的…
概率与期望dp 概率 某个事件A发生的可能性的大小,称之为事件A的概率,记作P(A). 假设某事的所有可能结果有n种,每种结果都是等概率,事件A涵盖其中的m种,那么P(A)=m/n. 例如投掷一枚骰子,点数小于3的概率为2/6=1/3. 如果两个事件A和B所涵盖的结果没有交集,那么P(A或B发生)=P(A)+P(B) 还是掷骰子 P(点数小于3或点数大于4)=2/6+2/6=2/3 如果A和B所涵盖的结果有交集 那么P(A或B发生)=P(A)+P(B)-P(A与B同时发生) P(点数小于3或点数…
[题意]有n种不同的邮票,第i次可以花i元等概率购买到一种邮票,求集齐n种邮票的期望代价.n<=10^4. [算法]期望DP [题解]首先设g[i]表示已拥有i张邮票集齐的期望购买次数,根据全期望公式,可以依赖于买到已集和未集邮票的情况: $$g[i]=\frac{i}{n}*g[i]+\frac{n-i}{n}*g[i+1]+1$$ 当然最后记得+1,然后移项解方程. 设f[i]表示已拥有i张邮票及其的期望代价,会发现因为是倒推,所以代价的问题变得很麻烦. 我们将代价倒置,假设购买k次,那么第…
期望DP. 补集转化,考虑不能被点亮的情况, 然后就是三种情况,自己不能亮,父亲不能点亮它,儿子不能点亮它. 第一次计算比较容易,第二次计算的时候需要出去第一次的影响,因为一条线只能传导一次 #include <map> #include <ctime> #include <cmath> #include <queue> #include <cstdio> #include <cstring> #include <iostrea…
题目:有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n.但是由于凡凡也很喜欢邮票,所以皮皮购买第k张邮票需要支付k元钱.现在皮皮手中没有邮票,皮皮想知道自己得到所有种类的邮票需要花费的钱数目的期望. ---------------------------------- 考虑递推. 设$f[i]$表示取了$i$种邮票,要取完剩下邮票的期望次数.显然$f[n]=0$.有$\frac{i}{…
资源分享 26 个比较概率大小的问题 数论小白都能看懂的数学期望讲解 概念 \(PS\):不需要知道太多概念,能拿来用就行了. 定义 样本(\(\omega\)):一次随机试验产生的一个结果. 样本空间(\(\Omega\)):一个随机试验的所有可能的结果的全体,即\(\Omega=\{\omega\}\). 事件(\(A\)):某一类结果,即\(A\subset\Omega\). 基本事件(\(s\)):各个互斥的事件即为基本事件. 我们借助样本空间S来定义概率.样本空间是基本事件的集合. 概…
3450: Tyvj1952 Easy Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 468  Solved: 353[Submit][Status][Discuss] Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下这个游戏的规则有n次点击要做,成功了就是o,失败了就是x,分数是按comb计算的,连续a个comb就有a*a分,comb就是极大的连续o.比如ooxxxxooooxxx…
4872: [Shoi2017]分手是祝愿 题意:n个灯开关游戏,按i后i的约数都改变状态.随机选择一个灯,如果当前最优策略\(\le k\)直接用最优策略.问期望步数\(\cdot n! \mod 1003\) 50% n=k 送分...从大到小选就行了...实际上送了80分... 这个期望DP没想到不应该啊 \(f[i]\)表示还有i步可以结束的期望步数 \[ f[i] = \frac{i}{n} f[i-1] + \frac{n-i}{n}f[i+1] +1 \\ f[i+1] = ...…
[题意]n种宝物,k关游戏,每关游戏给出一种宝物,可捡可不捡.每种宝物有一个价值(有负数).每个宝物有前提宝物列表,必须在前面的关卡取得列表宝物才能捡起这个宝物,求期望收益.k<=100,n<=15. [算法]期望DP+状压DP [题解]主要需要记录的状态是前缀已有宝物,所以设f[i][S]表示前i关已有宝物列表S的期望收益. 根据全期望公式,依赖于第i+1关的宝物选择:(如果列表符合) $$f[i][S]=\sum_{i=1}^{n}\frac{1}{n}*Max(f[i+1][S'],f[…
套路性地倒过来考虑,设\(f[i]\)表示拥有了\(i\)种票子时还需要多少次购买,\(g[i]\)表示还需要多少钱 推\(g[i]\)递推式时注意把代价倒过来(反正总数一定,从顺序第\(1\)张开始加钱和倒序没有区别) #include <bits/stdc++.h> using namespace std; const int N = 10005; double f[N],g[N]; int n; int main() { cin>>n; for(int i=n-1;i>…
诶这题洛谷居然没有??? 题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1444 题解: 我见到主要有三种做法. 一是矩阵乘法.设\(dp[t][i]\)表示时间\(t\)之后在AC自动机\(i\)节点的概率,那么转移是一个矩阵乘法的形式,构造转移矩阵\(f\), 如果\(u\)是某个串的结尾点,则\(f[u][u]=1,f[u][v]=0 (v\ne u)\), 否则直接按概率搞. 然后这个矩阵的\(t\)次幂就可以得到\(t\)…
链接: #include <stdio.h> int main() { puts("转载请注明出处[辗转山河弋流歌 by 空灰冰魂]谢谢"); puts("网址:blog.csdn.net/vmurder/article/details/46468557"); } 题解: 并没有什么卵用,首先有一个神思路.然后神推公式.以下这篇博客写得非常详尽..另外题意是买第 i 次花 i 元,不是标号为 i 的邮票花 i 元. <strong">…
Description osu 是一款群众喜闻乐见的休闲软件.  我们可以把osu的规则简化与改编成以下的样子:  一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1个长度为n的01串.在这个串中连续的 X个1可以贡献X^3 的分数,这x个1不能被其他连续的1所包含(也就是极长的一串1,具体见样例解释)  现在给出n,以及每个操作的成功率,请你输出期望分数,输出四舍五入后保留1位小数.      Input 第一行有一个正整数n,表示操作个数.接下去n行每行有一…
Aeroplane chess Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 4239    Accepted Submission(s): 2674 Problem Description Hzz loves aeroplane chess very much. The chess map contains N+1 grids lab…
LOOPS Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 125536/65536 K (Java/Others)Total Submission(s): 6457    Accepted Submission(s): 2592 Problem Description Akemi Homura is a Mahou Shoujo (Puella Magi/Magical Girl). Homura wants to help h…
前言 前两节主要针对题目分析,没时间的珂以跳过. 初步 首先举一道简单.经典的好题: [Lightoj1038]Race to 1 Again 懒得单独写,安利一下DennyQi同学的博客:https://www.cnblogs.com/qixingzhi/p/9346307.html. 很显然很多期望题的状态是和自己有关的,怎么办呢,难道不停的搜索自己? 上面的方法显然行不通,于是我们只能简单变形一下. 很容易列出方程: \[f[n]= \frac{\sum_{i=1}^{m}f[fac_n^…
期望=Σ概率*权值 1. Codeforces 148-D 考虑用$f[i][j]$表示princess进行操作时[还剩有i只w,j只b]这一状态的存在概率.这一概率要存在,之前draw out的一定是b,跳出的可能是w可能是b.$ans=\sum\limits f[i][j]*i/(i+j)$ 需要注意的是操作时有先后的.由于我们只关心princess,那么上一轮的顺序必须满足princess, dragon, scared mice. 由于i,j都是整数,在处理概率的时候要*1.0或(dou…
从终点往起点倒推 . 在一个图 考虑点 u , 出度为 s : s = 0 , d[ u ] = 0 ; s ≠ 0 , 则 d( u ) = ( ∑ d( v ) ) / s ( ( u , v ) ∈ E ) ---------------------------------------------------------------------------- #include<cstdio> #include<cstdlib> #include<cstring>…