HMM算法想必大家已经听说了好多次了,完全看公式一头雾水.但是HMM的基本理论其实很简单.因为HMM是马尔科夫链中的一种,只是它的状态不能直接被观察到,但是可以通过观察向量间接的反映出来,即每一个观察向量由一个具有相应概率密度分布的状态序列产生,又由于每一个状态也是随机分布的,所以HMM是一个双重随机过程. HMM是语音识别,人体行为识别,文字识别等领域应用非常广泛. 一个HMM模型可以用5个元素来描述,包过2个状态集合和3个概率矩阵.其分别为 隐含状态S,可观测状态O,初始状态概率矩阵π,隐含…
维特比算法(Viterbi) 维特比算法  编辑 维特比算法是一种动态规划算法用于寻找最有可能产生观测事件序列的-维特比路径-隐含状态序列,特别是在马尔可夫信息源上下文和隐马尔可夫模型中.术语“维特比路径”和“维特比算法”也被用于寻找观察结果最有可能解释相关的动态规划算法.例如在统计句法分析中动态规划算法可以被用于发现最可能的上下文无关的派生(解析)的字符串,有时被称为“维特比分析”.   中文名 维特比算法 外文名 Viterbi Algorithm 提出时间 1967年 提出者 安德鲁·维特…
转自http://www.hankcs.com/security/des-algorithm-illustrated.html 译自J. Orlin Grabbe的名作<DES Algorithm Illustrated>,国外许多大学将该文章作为补充材料,可作为理解DES算法的最佳入门手册.反观许多教材介绍DES时直接照搬一张流程图,图中IP等缩写符号不加解释,让人误解:许多博客则直接给出蹩脚的源码,对内部流程缺乏解读.事实上,DES在算法上并不复杂,只是流程繁多而已.此时利用一个简单的例子…
HMM的学习笔记 HMM是关于时序的概率模型.描写叙述由一个隐藏的马尔科夫链随机生成不可观測的状态随机序列,再由各个状态生成不可观測的状态随机序列,再由各个状态生成一个观測而产生观測的随机过程. HMM由两个状态和三个集合构成.他们各自是观測状态序列.隐藏状态序列.转移概率,初始概率和混淆矩阵(观察值概率矩阵). HMM的三个如果: .有限历史性如果,p(si|si-1,si-2,...,s1) = p(si|si-1) .齐次性如果,(状态与详细时间无关).P(si+1|si)=p(sj+1,…
作者:Scofield链接:https://www.zhihu.com/question/35866596/answer/236886066来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. so far till now, 我还没见到过将CRF讲的个明明白白的.一个都没.就不能不抄来抄去吗?我打算搞一个这样的版本,无门槛理解的.——20170927 陆陆续续把调研学习工作完成了,虽然历时有点久,现在put上来.评论里的同学也等不及了时不时催我,所以不敢怠慢啊…… 总…
在中文标注时,除了条件随机场(crf),被提到次数挺多的还有隐马尔可夫(HMM),通过对<统计学习方法>一书的学习,我对HMM的理解进一步加深了. 第一部分 介绍隐马尔可夫 隐马尔可夫模型是马尔可夫链的一种,它的状态不能直接观察到,但能通过观测向量序列观察到,每个观测向量都是通过某些概率密度分布表现为各种状态,每一个观测向量是由一个具有相应概率密度分布的状态序列产生. 这样一说可能会有点复杂,给个例子可能会好一点.就拿我们读初高中时的概率问题来作为例子吧. 已知有一个密度均匀的六面色子,能掷出…
条件随机场CRF(一)从随机场到线性链条件随机场 条件随机场CRF(二) 前向后向算法评估标记序列概率 条件随机场CRF(三) 模型学习与维特比算法解码 在CRF系列的前两篇,我们总结了CRF的模型基础与第一个问题的求解方法,本文我们关注于linear-CRF的第二个问题与第三个问题的求解.第二个问题是模型参数学习的问题,第三个问题是维特比算法解码的问题. 1. linear-CRF模型参数学习思路 在linear-CRF模型参数学习问题中,我们给定训练数据集$X$和对应的标记序列$Y$,$K$…
ArcGIS案例学习笔记-中国2000坐标转换实例 联系方式:谢老师,135-4855-4328,xiexiaokui#qq.com 目的:西安1980.中国2000.WGS84(GPS)等任意坐标系下高精度相互转换 特点: 1.不同坐标基准,支持ArcGIS数千种坐标系2.高精度,坐标转换理论中最优方法最高精度最大范围,范围可达百公里,精度可达mm级3.支持批处理,所有空间数据,一次处理,整个项目区,整个县,整个城市,整个省,整个国家,全世界,可以一次完成.不用写程序代码.目的:西安1980.…
http://www.cnblogs.com/denny402/p/5852983.html ensorflow学习笔记四:mnist实例--用简单的神经网络来训练和测试   刚开始学习tf时,我们从简单的地方开始.卷积神经网络(CNN)是由简单的神经网络(NN)发展而来的,因此,我们的第一个例子,就从神经网络开始. 神经网络没有卷积功能,只有简单的三层:输入层,隐藏层和输出层. 数据从输入层输入,在隐藏层进行加权变换,最后在输出层进行输出.输出的时候,我们可以使用softmax回归,输出属于每…
python3.4学习笔记(十三) 网络爬虫实例代码,使用pyspider抓取多牛投资吧里面的文章信息PySpider:一个国人编写的强大的网络爬虫系统并带有强大的WebUI,采用Python语言编写,分布式架构,支持多种数据库后端,强大的WebUI支持脚本编辑器,任务监视器,项目管理器以及结果查看器. 用pyspider的demo页面创建了一个爬虫,写一个正则表达式抓取多牛网站上特定的URL,很容易就得到想要的结果了,可以非常方便分析抓取页面里面的内容binux/pyspider · GitH…