Tensorflow中的padding操作】的更多相关文章

转载请注明出处:http://www.cnblogs.com/willnote/p/6746668.html 图示说明 用一个3x3的网格在一个28x28的图像上做切片并移动 移动到边缘上的时候,如果不超出边缘,3x3的中心就到不了边界 因此得到的内容就会缺乏边界的一圈像素点,只能得到26x26的结果 而可以越过边界的情况下,就可以让3x3的中心到达边界的像素点 超出部分的矩阵补零 代码说明 根据tensorflow中的conv2d函数,我们先定义几个基本符号 输入矩阵 W×W,这里只考虑输入宽…
TensorFlow 中卷积操作和池化操作中都有一个参数 padding,其可选值有 ['VALID', 'SAME']. 在 TensorFlow 文档中只是给出了输出张量的维度计算方式,但是并没有说明当 padding='SAME' 时,如何进行补零操作. 其给出的输出张量的维度计算公式: VALID 方式: output_shape[i] = ceil((input_shape[i] - (filter_shape[i] - 1) * dilation_rate[i]) / strides…
Tensor是Tensorflow中重要的对象.下面是Tensor的常用方法,后面还会写一篇随笔记录Variable的用法. 1. 生成一个(常)Tensor对象 >>>A = tf.constant(4) >>>B = tf.constant([[1, 2], [3, 4])) >>>A <tf.Tensor: id=76, shape=(), dtype=int32, numpy=4> >>>B <tf.Tens…
反卷积是指,通过测量输出和已知输入重构未知输入的过程.在神经网络中,反卷积过程并不具备学习的能力,仅仅是用于可视化一个已经训练好的卷积神经网络,没有学习训练的过程.反卷积有着许多特别的应用,一般可以用于信道均衡.图像恢复.语音识别.地震学.无损探伤等未知输入估计和过程辨识方面的问题. 在神经网络的研究中,反卷积更多的是充当可视化的作用,对于一个复杂的深度卷积网络,通过每层若干个卷积核的变换,我们无法知道每个卷积核关注的是什么,变换后的特征是什么样子.通过反卷积的还原,可以对这些问题有个清晰的可视…
在深度学习的图像识别领域中,我们经常使用卷积神经网络CNN来对图像进行特征提取,当我们使用TensorFlow搭建自己的CNN时,一般会使用TensorFlow中的卷积函数和池化函数来对图像进行卷积和池化操作,而这两种函数中都存在参数padding,该参数的设置很容易引起错误,所以在此总结下. 1.为什么要使用padding 在弄懂padding规则前得先了解拥有padding参数的函数,在TensorFlow中,主要使用tf.nn.conv2d()进行(二维数据)卷积操作,tf.nn.max_…
1 TensorFlow中用到padding的地方 在TensorFlow中用到padding的地方主要有tf.nn.conv2d(),tf.nn.max_pool(),tf.nn.avg_pool()等,用法如下: tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None,name=None) #来进行(二维数据)卷积操作 tf.nn.max_pool_with_argmax(input, ksize, stride…
根据tensorflow中的Conv2D函数,先定义几个基本符号: 输入矩阵W*W,这里只考虑输入宽高相等的情况,如果不相等,推导方法一样 filter矩阵F*F,卷积核 stride值S,步长 输出宽高为new_height,new_width 在tensorflow中padding的方式有两种,一种是valid,一种是same padding='valid' new_height = new_width = (W - F + 1) / S  (结果向上取整) 也就是说,Conv2D的vali…
Python中的list/tuple,numpy中的ndarrray与tensorflow中的tensor. 用python中list/tuple理解,仅仅是从内存角度理解一个序列数据,而非数学中标量,向量和张量. 从python内存角度理解,就是一个数值,长度为1,并且不是一个序列: 从numpy与tensorflow数学角度理解,就是一个标量,shape为(),其轴为0: [1,2,3,4,5,6] 从python内存角度理解,就是1*6或者长度为6的一个序列: 从numpy与tensorf…
Google在TensorFlow1.0,之后推出了一个叫slim的库,TF-slim是TensorFlow的一个新的轻量级的高级API接口.这个模块是在16年新推出的,其主要目的是来做所谓的“代码瘦身”.它类似我们在TensorFlow模块中所介绍的tf.contrib.lyers模块,将很多常见的TensorFlow函数进行了二次封装,使得代码变得更加简洁,特别适用于构建复杂结构的深度神经网络,它可以用了定义.训练.和评估复杂的模型. 这里我们为什么要过来介绍这一节的内容呢?主要是因为Ten…
在深度学习章节里,已经介绍了批量归一化的概念,详情请点击这里:第九节,改善深层神经网络:超参数调试.正则化以优化(下) 神经网络在进行训练时,主要是用来学习数据的分布规律,如果数据的训练部分和测试部分分布不一样,那么网络的泛化能力会变得非常差.而且对于训练的数据,每批分布也是不一样的,那么网络在迭代的过程中也要学习和适应不同的分布.这会大大降低网络的训练速度.此外,数据的分布对于激活函数来说也非常重要,有时数据分布范围太大不利于利用激活函数的非线性特性,比如激活函使用Sigmoid函数时,会导致…