Hive 数据倾斜怎么发现,怎么定位,怎么解决 多数介绍数据倾斜的文章都是以大篇幅的理论为主,并没有给出具体的数据倾斜案例.当工作中遇到了倾斜问题,这些理论很难直接应用,导致我们面对倾斜时还是不知所措. 今天我们不扯大篇理论,直接以例子来实践,排查是否出现了数据倾斜,具体是哪段代码导致的倾斜,怎么解决这段代码的倾斜. 当执行过程中任务卡在 99%,大概率是出现了数据倾斜,但是通常我们的 SQL 很大,需要判断出是哪段代码导致的倾斜,才能利于我们解决倾斜.通过下面这个非常简单的例子来看下如何定位产…
数据倾斜产生的原因 数据倾斜的原因很大部分是join倾斜和聚合倾斜两大类 Hive倾斜之group by聚合倾斜 原因: 分组的维度过少,每个维度的值过多,导致处理某值的reduce耗时很久: 对一些类型统计的时候某种类型的数据量特别多,其他的数据类型特别少.当按照类型进行group by的时候,会将相同的group by字段的reduce任务需要的数据拉取到同一个节点进行聚合,而当其中每一组的数据量过大时,会出现其他组的计算已经完成而这个reduce还没有计算完成,其他的节点一直等待这个节点的…
数据倾斜是进行大数据计算时最经常遇到的问题之一.当我们在执行HiveQL或者运行MapReduce作业时候,如果遇到一直卡在map100%,reduce99%一般就是遇到了数据倾斜的问题.数据倾斜其实是进行分布式计算的时候,某些节点的计算能力比较强或者需要计算的数据比较少,早早执行完了,某些节点计算的能力较差或者由于此节点需要计算的数据比较多,导致出现其他节点的reduce阶段任务执行完成,但是这种节点的数据处理任务还没有执行完成. 在hive中产生数据倾斜的原因和解决方法: 1)group b…
倾斜的原因: 使map的输出数据更均匀的分布到reduce中去,是我们的最终目标.由于Hash算法的局限性,按key Hash会或多或少的造成数据倾斜.大量经验表明数据倾斜的原因是人为的建表疏忽或业务逻辑可以规避的. 解决思路: Hive的执行是分阶段的,map处理数据量的差异取决于上一个stage的reduce输出,所以如何将数据均匀的分配到各个reduce中,就是解决数据倾斜的根本所在 具体办法: 内存优化和I/O优化: 驱动表:使用大表做驱动表,以防止内存溢出:Join最右边的表是驱动表:…
数据倾斜是进行大数据计算时最经常遇到的问题之一.当我们在执行HiveQL或者运行MapReduce作业时候,如果遇到一直卡在map100%,reduce99%一般就是遇到了数据倾斜的问题.数据倾斜其实是进行分布式计算的时候,某些节点的计算能力比较强或者需要计算的数据比较少,早早执行完了,某些节点计算的能力较差或者由于此节点需要计算的数据比较多,导致出现其他节点的reduce阶段任务执行完成,但是这种节点的数据处理任务还没有执行完成. 在hive中产生数据倾斜的原因和解决方法: 1)group b…
数据倾斜是进行大数据计算时最经常遇到的问题之一.当我们在执行HiveQL或者运行MapReduce作业时候,如果遇到一直卡在map100%,reduce99%一般就是遇到了数据倾斜的问题.数据倾斜其实是进行分布式计算的时候,某些节点的计算能力比较强或者需要计算的数据比较少,早早执行完了,某些节点计算的能力较差或者由于此节点需要计算的数据比较多,导致出现其他节点的reduce阶段任务执行完成,但是这种节点的数据处理任务还没有执行完成. 在hive中产生数据倾斜的原因和解决方法: 1)group b…
何谓数据倾斜?数据倾斜指的是,并行处理的数据集 中,某一部分(如Spark的一个Partition)的数据显著多于其它部分,从而使得该部分的处理速度成为整个数据集处理的瓶颈. 表现为整体任务基本完成,但仍有少量子任务的reduce还在运行. 数据倾斜的原因: 1.join 一个表较小,但key集中,分发到一个或者几个reduce上的数据远高于平均值: 大表与大表关联,但分桶的判断字段0值或者空值过多,这些空值或者0值都由一个reduce处理 2.group by 分组的维度过少,每个维度的值过多…
卧槽草草 来源于其它博客: 貌似我只知道group by key带来的倾斜 hive在跑数据时经常会出现数据倾斜的情况,使的作业经常reduce完成在99%后一直卡住,最后的1%花了几个小时都没跑完,这种情况就很可能是数据倾斜的原因,解决方法要根据具体情况来选择具体的方案 1.join的key值发生倾斜,key值包含很多空值或是异常值 这种情况可以对异常值赋一个随机值来分散key 如: select userid,name from user_info a join( select case w…
在做Shuffle阶段的优化过程中,遇到了数据倾斜的问题,造成了对一些情况下优化效果不明显.主要是因为在Job完成后的所得到的Counters是整个Job的总和,优化是基于这些Counters得出的平均值,而由于数据倾斜的原因造成map处理数据量的差异过大,使得这些平均值能代表的价值降低.Hive的执行是分阶段的,map处理数据量的差异取决于上一个stage的reduce输出,所以如何将数据均匀的分配到各个reduce中,就是解决数据倾斜的根本所在.规避错误来更好的运行比解决错误更高效.在查看了…
转自:https://blog.csdn.net/xinzhi8/article/details/71455883 操作: 关键词 情形      后果 Join 其中一个表较小,但是key集中     分发到某一个或几个Reduce 上的数据远高于平均值   大表与大表,但是分桶的判断字段0值或空值过多     这些空值都由一个reduce处理非常慢 group by group by 维度过小,某值的数量过多    处理某值的reduce非常耗时 Count Distinct 某特殊值过多…
数据倾斜是进行大数据计算时常见的问题.主要分为map端倾斜和reduce端倾斜,map端倾斜主要是因为输入文件大小不均匀导致,reduce端主要是partition不均匀导致. 在hive中遇到数据倾斜的解决办法: 一.倾斜原因:map端缓慢,输入数据文件多,大小不均匀 当出现小文件过多,需要合并小文件.可以通过set hive.merge.mapfiles=true来解决. set hive.map.aggr=true; //map端部分聚合,相当于Combiner,可以减小压力(默认开启)…
在做Shuffle阶段的优化过程中,遇到了数据倾斜的问题,造成了对一些情况下优化效果不明显.主要是因为在Job完成后的所得到的Counters是整个Job的总和,优化是基于这些Counters得出的平均值,而由于数据倾斜的原因造成map处理数据量的差异过大,使得这些平均值能代表的价值降低.Hive的执行是分阶段的,map处理数据量的差异取决于上一个stage的reduce输出,所以如何将数据均匀的分配到各个reduce中,就是解决数据倾斜的根本所在.规避错误来更好的运行比解决错误更高效.在查看了…
https://blog.csdn.net/yu0_zhang0/article/details/81776459 https://blog.csdn.net/lxpbs8851/article/details/9814007 https://blog.csdn.net/young_0609/article/details/84593316…
NFS,全名叫Network File System,中文叫网络文件系统,是Linux.UNIX系统的分布式文件系统的一个组成部分,可实现在不同网络上共享远程文件系统. NFS由Sun公司开发,目前已经成为文件服务的一种标准之一(RFC1904,RFC1813). 其最大的功能就是可以通过网络,让不同操作系统的计算机可以共享数据,所以可以把NFS看做是一个文件服务器.NFS缺点是其读写性能比本地硬盘要差一些. 一.NFS服务常见故障排查: NFS服务出现了故障,主要从以下几个方面检查原因: (1…
我尝试着在classpath中加n入mysql的驱动仍不行 解决方法:在启动的时候加入参数--driver-class中加入mysql 驱动 [hadoop@master spark-1.0.1-bin-hadoop2]$ bin/spark-shell --driver-class-path lib/mysql-connector-java-5.1.30-bin.jar 总结:1.spark的版本必须编译的时候加上了hive 1.0.0预编译版没有加入hive  1.0.1是含有hive的2.…
一.现象 map/reduce程序执行时,reduce节点大部分执行完毕,但是有一个或者几个reduce节点运行很慢,导致整个程序的处理时间很长,这是因为某一个key的条数比其他key多很多(有时是百倍或者千倍之多),这条key所在的reduce节点所处理的数据量比其他节点就大很多,从而导致某几个节点迟迟运行不完,此称之为数据倾斜. 二.具体情况及解决 1. join的key值发生倾斜 1) key值包含很多空值或是异常值 如果需要这些值,可以给这些值赋一些随机值: select userid…
目录 什么是数据倾斜 Hadoop框架的特性 主要表现 容易数据倾斜的情况 产生数据清洗的原因 业务场景 空值产生的数据倾斜 不同数据类型关联产生数据倾斜 大小表关联查询产生数据倾斜 一.什么是数据倾斜 由于数据分布不均匀,造成数据大量的集中到一点,造成数据热点 二.Hadoop框架的特性 不怕数据大,怕数据倾斜 jobs数比较多的作业运行效率相对比较低,如子查询比较多 sum.count.max.min等聚合函数,通常不会有数据倾斜问题 三.主要表现 任务进度长时间维持在99%或者100%的附…
数据倾斜 为什么会数据倾斜 spark 中的数据倾斜并不是说原始数据存在倾斜,原始数据都是一个一个的 block,大小都一样,不存在数据倾斜: 而是指 shuffle 过程中产生的数据倾斜,由于不同的 key 对应的数据量不同导致不同 task 处理的数据量不同 注意:数据倾斜与数据过量不同,数据倾斜是某几个 task 处理的数据量很大,数据过量是所有 task 处理的数据量都很大 数据倾斜的表现 大部分 task 都快速执行完毕,少数 task 执行缓慢,甚至报错 OOM,即使最终运行完毕,也…
转自:http://my.oschina.net/leejun2005/blog/100922 最近几次被问到关于数据倾斜的问题,这里找了些资料也结合一些自己的理解. 在并行计算中我们总希望分配的每一个task 都能以差不多的粒度来切分并且完成时间相差不大,但是集群中可能硬件不同,应用的类型不同和切分的数据大小不一致总会导致有部分任务极大的拖慢了整个任务的完成时间,硬件不同就不说了,应用的类型不同其中就比如page rank 或者data mining 里面一些计算,它的每条记录消耗的成本不太一…
数据倾斜特征:个别Task处理大部分数据 后果:1.OOM;2.速度变慢,甚至变得慢的不可接受 常见原因: 数据倾斜的定位: 1.WebUI(查看Task运行的数据量的大小). 2.Log,查看log中哪一行出现OOM,查找具体哪个Stage,进而确定哪一个shuffle产生了数据倾斜. 3.查看代码,主要是join,groupByKey,reduceByKey等代码. 4.对数据特征分布进行分析.…
Hive SQL的各种优化方法基本 都和数据倾斜密切相关. Hive的优化分为join相关的优化和join无关的优化,从项目的实际来说,join相关的优化占了Hive优化的大部分内容,而join相关的优化又分为mapjoin可以解决的join优化和mapjoin无法解决的join优化. 1.数据倾斜 倾斜来自于统计学里的偏态分布.所谓偏态分布,即统计数据峰值与平均值不相等的频率分布,根据峰值小于或大于平均值可分为正偏函数和负偏函数,其偏离的程度可用偏态系数刻画. 对应分布式数据处理来说,希望数据…
数据倾斜只会发生在shuffle过程中.这里给大家罗列一些常用的并且可能会触发shuffle操作的算子:distinct.groupByKey.reduceByKey.aggregateByKey.join.cogroup.repartition等.出现数据倾斜时,可能就是你的代码中使用了这些算子中的某一个所导致的. ​ 某个task执行特别慢的情况 首先要看的,就是数据倾斜发生在第几个stage中. 可以通过Spark Web UI来查看当前运行到了第几个stage,看一下当前这个stage各…
在做Shuffle阶段的优化过程中,遇到了数据倾斜的问题,造成了对一些情况下优化效果不明显.主要是因为在Job完成后的所得到的 Counters是整个Job的总和,优化是基于这些Counters得出的平均值,而由于数据倾斜的原因造成map处理数据量的差异过大,使得这些平均 值能代表的价值降低.Hive的执行是分阶段的,map处理数据量的差异取决于上一个stage的reduce输出,所以如何将数据均匀的分配到各个 reduce中,就是解决数据倾斜的根本所在.规避错误来更好的运行比解决错误更高效.在…
[版权申明:本文系作者原创,转载请注明出处] 文章出处:http://blog.csdn.net/sdksdk0/article/details/51675005 作者: 朱培          ID:sdksdk0 Hive环境的搭建在这里也不重复说了,安装配置可以查看我的这篇文章:http://blog.csdn.net/sdksdk0/article/details/51512031.在这里主要是分享一下HQL语句实践及其函数的基本使用. 一.Hive的基本概念 在Hive中没有插入操作,…
[数据倾斜及调优概述] 大数据分布式计算中一个常见的棘手问题——数据倾斜: 在进行shuffle的时候,必须将各个节点上相同的key拉取到某个节点上的一个task来进行处理,比如按照key进行聚合或join等操作.此时如果某个key对应的数据量特别大的话,就会发生数据倾斜.比如大部分key对应10条数据,但是个别key却对应了百万条数据,那么大部分task可能就只会分配到10条数据,然后1秒钟就运行完了:但是个别task可能分配到了百万数据,要运行一两个小时.木桶原理,整个作业的运行进度是由运行…
一:hive中的三种join 1.map join 应用场景:小表join大表 一:设置mapjoin的方式: )如果有一张表是小表,小表将自动执行map join. 默认是true. <property> <name>hive.auto.convert.join</name> <value>true</value> </property> )判断小表 <property> <name>hive.mapjoin…
在做Shuffle阶段的优化过程中,遇 到了数据倾斜的问题,造成了对一些情况下优化效果不明显.主要是因为在Job完成后的所得到的Counters是整个Job的总和,优化是基于这些 Counters得出的平均值,而由于数据倾斜的原因造成map处理数据量的差异过大,使得这些平均值能代表的价值降低.Hive的执行是分阶段 的,map处理数据量的差异取决于上一个stage的reduce输出,所以如何将数据均匀的分配到各个reduce中,就是解决数据倾斜的根本所在.规 避错误来更好的运行比解决错误更高效.…
1.什么是数据倾斜? 由于数据分布不均匀,造成数据大量的集中到一点,造成数据热点 2.Hadoop 框架的特性 A.不怕数据大,怕数据倾斜 B.Jobs 数比较多的作业运行效率相对比较低,如子查询比较多 C. sum,count,max,min 等聚集函数,通常不会有数据倾斜问题 3.主要表现 任务进度长时间维持在 99%或者 100%的附近,查看任务监控页面,发现只有少量 reduce 子任务未完成,因为其处理的数据量和其他的 reduce 差异过大. 单一 reduce 处理的记录数和平均记…
Hive中的数据倾斜 hive 1. 什么是数据倾斜 mapreduce中,相同key的value都给一个reduce,如果个别key的数据过多,而其他key的较少,就会出现数据倾斜.通俗的说,就是我们在处理的时候数据分布的不均,导致了数据大量集中在某一点.造成了数据的热点. 其实在mapreduce分析的时候最怕的就是数据倾斜,通常会出现下面的情况: map阶段处理比较快,reduce阶段处理比较慢.其实reduce阶段不应该很慢,如果很慢,很大可能就是出现了数据倾斜. 1) 有的reduce…
数据倾斜解决方法,通常从以下几个方面进行考量: 业务上丢弃  •  不参与关联:在on条件上直接过滤 •  随机数打散:比如 null.空格.0等“Other”性质的特殊值  倾斜键记录单独处理 •  Join:找出倾斜key,把对应数据插入临时表,如果该表是小表,使用map join解决: •  Group by: set hive.groupby.skewindata = true   数据重分布  •  语法:Distribute By •  场景:为下一个Stage的Map输入做负载均衡…