DeepLabV3+语义分割实战】的更多相关文章

DeepLabV3+语义分割实战 语义分割是计算机视觉的一项重要任务,本文使用Jittor框架实现了DeepLabV3+语义分割模型. DeepLabV3+论文:https://arxiv.org/pdf/1802.02611.pdf 完整代码:https://github.com/Jittor/deeplab-jittor 1. 数据集 1.1 数据准备 VOC2012数据集是目标检测.语义分割等任务常用的数据集之一, 本文使用VOC数据集的2012 trainaug (train + sbd…
图像分割是计算机视觉中除了分类和检测外的另一项基本任务,它意味着要将图片根据内容分割成不同的块.相比图像分类和检测,分割是一项更精细的工作,因为需要对每个像素点分类,如下图的街景分割,由于对每个像素点都分类,物体的轮廓是精准勾勒的,而不是像检测那样给出边界框. 图像分割可以分为两类:语义分割(Semantic Segmentation)和实例分割(Instance Segmentation),其区别如图所示. 可以看到语义分割只是简单地对图像中各个像素点分类,但是实例分割更进一步,需要区分开不同…
摘要:FCN对图像进行像素级的分类,从而解决了语义级别的图像分割问题. 本文分享自华为云社区<全卷积网络(FCN)实战:使用FCN实现语义分割>,作者: AI浩. FCN对图像进行像素级的分类,从而解决了语义级别的图像分割(semantic segmentation)问题.与经典的CNN在卷积层之后使用全连接层得到固定长度的特征向量进行分类(全联接层+softmax输出)不同,FCN可以接受任意尺寸的输入图像,采用反卷积层对最后一个卷积层的feature map进行上采样, 使它恢复到输入图像…
前言 今天我们一起来看一下如何使用LabVIEW实现语义分割. 一.什么是语义分割 图像语义分割(semantic segmentation),从字面意思上理解就是让计算机根据图像的语义来进行分割,例如让计算机在输入下面左图的情况下,能够输出右图.语义在语音识别中指的是语音的意思,在图像领域,语义指的是图像的内容,对图片意思的理解,比如下图的语义就是一个人牵着四只羊:分割的意思是从像素的角度分割出图片中的不同对象,对原图中的每个像素都进行标注,比如下图中浅黄色代表人,蓝绿色代表羊.语义分割任务就…
前言: 本文将介绍如何基于ProxylessNAS搜索semantic segmentation模型,最终搜索得到的模型结构可在CPU上达到36 fps的测试结果,展示自动网络搜索(NAS)在语义分割上的应用.   随着自动网络搜索(Neural Architecture Search)技术的问世,深度学习已慢慢发展到自动化设计网络结构以及超参数配置的阶段.尤其在AI落地的背景下,许多模型需要部署在移动端设备.依据不同设备(GPU, CPU,芯片等),不同的模型需求(latency, 模型大小,…
语义分割是将标签分配给图像中的每个像素的过程.这与分类形成鲜明对比,其中单个标签被分配给整个图片.语义分段将同一类的多个对象视为单个实体.另一方面,实例分段将同一类的多个对象视为不同的单个对象(或实例).通常,实例分割比语义分割更难. 语义和实例分割之间的比较.(来源) 本博客探讨了使用经典和深度学习方法执行语义分割的一些方法.此外,还讨论了流行的损失函数选择和应用. 经典方法 在深度学习时代开始之前,使用了大量的图像处理技术将图像分割成感兴趣的区域.下面列出了一些常用的方法. 灰度分割 最简单…
引言 之前一段时间在参与语义分割的项目,最近有时间了,正好把这段时间的所学总结一下. 在代码上,语义分割的框架会比目标检测简单很多,但其中也涉及了很多细节.在这篇文章中,我以PSPNet为例,解读一下语义分割框架的代码.搞清楚一个框架后,再看别人的框架都是大同小异. 工程来自https://github.com/speedinghzl/pytorch-segmentation-toolbox 框架中一个非常重要的部分是evaluate.py,即测试阶段.但由于篇幅较长,我将另开一篇来阐述测试过程…
花了点时间梳理了一下DeepLab系列的工作,主要关注每篇工作的背景和贡献,理清它们之间的联系,而实验和部分细节并没有过多介绍,请见谅. DeepLabv1 Semantic image segmentation with deep convolutional nets and fully connected CRFs link:https://arxiv.org/pdf/1412.7062v3.pdf 引言 DCNN在像素标记存在两个问题:信号下采用和空间不变性(invariance) 第一个…
1.介绍 语义分割通常有两个问题:类内不一致性(同一物体分成两类)和类间不确定性(不同物体分成同一类).本文从宏观角度,认为语义分割不是标记像素而是标记一个整体,提出了两个结构解决这两个问题,平滑网络和边界网络(Smooth Network and Border Network).平滑网络用的是通道注意力块(Channel Attention Block),来解决类内不一致性.边界网络集成了语义边界损失. 2.相关工作 Encoder-Decoder:主要考虑如何恢复由于池化造成的空间信息损失,…
[摘要]本文简单介绍了NAS的发展现况和在语义分割中的应用,并且详细解读了两篇流行的work:DARTS和Auto-DeepLab. 自动网络搜索 多数神经网络结构都是基于一些成熟的backbone,如ResNet, MobileNet,稍作改进构建而成来完成不同任务.正因如此,深度神经网络总被诟病为black-box,因为hyparameter是基于实验求得而并非通过严谨的数学推导.所以,很多DNN研究人员将大量时间花在修改模型和实验“调参”上面,而忽略novelty本身.许多教授戏称这种现象…