原文出处:https://www.cnblogs.com/dirge/p/5503289.html 树的计数 + prufer序列与Cayley公式 学习笔记(转载) 首先是 Martrix67 的博文:http://www.matrix67.com/blog/archives/682 然后是morejarphone同学的博文:http://blog.csdn.net/morejarphone/article/details/50677172 因为是偶然翻了他的这篇博文,然后就秒会了. pruf…
首先是 Martrix67 的博文:http://www.matrix67.com/blog/archives/682 然后是morejarphone同学的博文:http://blog.csdn.net/morejarphone/article/details/50677172 因为是偶然翻了他的这篇博文,然后就秒会了. prufer数列,可以用来解一些关于无根树计数的问题. prufer数列是一种无根树的编码表示,对于一棵n个节点带编号的无根树,对应唯一一串长度为n-1的prufer编码. (…
最近碰了$prufer$ 序列和组合数..于是老师留了一道题:P2624 [HNOI2008]明明的烦恼 qwq要用高精... 于是我们有了弱化版:P2290 [HNOI2004]树的计数(考一样的可还行OvO) 首先前置知识:$Prufer序列$ 然后,因为对于一个$ Prufer $序列有$n-2$ 项,而每个点的度数-1是这个点在$ Prufer$ 序列中出现的次数 所以...这不是多重集的排列吗(不懂多重集?) 所以我们成功了一半(雾) 在计算时会爆$ long \space long…
先安利一发.让我秒懂.. 第一次讲这个是在寒假...然而当时秦神太巨了导致我这个蒟蒻自闭+颓废...早就忘了这个东西了... 结果今天老师留的题中有两道这种的:Luogu P4981 P4430 然后决定了解一下... 一.Prufer序列 Prufer序列,可以用来解一些关于无根树计数的问题. Prufer序列是一种无根树的编码表示,对于一棵n个节点带编号的无根树,对应唯一一串长度为n-1的Prufer编码,这性质很好. 1.无根树转化为Prufer序列 首先定义无根树中度数为1的节点是叶子节…
题面: 一个有n个结点的树,设它的结点分别为v1, v2, …, vn,已知第i个结点vi的度数为di,问满足这样的条件的不同的树有多少棵.给定n,d1, d2, …, dn,你的程序需要输出满足d(vi)=di的树的个数. 题解: 乍一看是组合数学,,,当然了,实际上也是组合数. 只不过要是知道prufer数列就很简单了. 那先来看看prufer数列吧! 将树转化成Prufer数列的方法 一种生成Prufer序列的方法是迭代删点,直到原图仅剩两个点.对于一棵顶点已经经过编号的树T,顶点的编号为…
题目链接 bzoj1211: [HNOI2004]树的计数 题解 prufer序 可重排列计数 代码 #include<bits/stdc++.h> using namespace std; #define int long long int n = 0; int b[10007]; int cnt[10007]; void Div(int x,int k = 1) { for(int j = 2;j * j <= x;++ j) { while(x % j == 0) { cnt[j]…
题解 首先我们要知道一条性质,prufer序列中的某个点出现次数为该点在树中度数-1 感性理解一下,其实按照prufer序列求法自己推一下就出来了 设题目里给的度为$d[]$ 先将所有的d-- 然后按照排列组合得出来 这是多重集排列数 首先从n-2中选择d[1]个数是$C_{n}^{d[1]}$然后再从剩余n-d[1]中选d[2] $C_{n-d[1]}^{d[2]}$依次类推 $C_{n-2}^{d[1]}\times C_{n-2-d[1]}^{d[2]}\times C_{n-2-d[1]…
题目大意:给定一棵树中全部点的度数,求有多少种可能的树 Prufer序列.详细參考[HNOI2008]明明的烦恼 直接乘会爆long long,所以先把每一个数分解质因数.把质因数的次数相加相减.然后再乘起来 注意此题无解须要输出0 当n!=1&&d[i]==0时 输出0 当Σ(d[i]-1)!=n-2时输出0 写代码各种脑残--竟然直接算了n-2没用阶乘-- #include<cstdio> #include<cstring> #include<iostre…
[BZOJ1005][HNOI2008]明明的烦恼 Description 自从明明学了树的结构,就对奇怪的树产生了兴趣......给出标号为1到N的点,以及某些点最终的度数,允许在任意两点间连线,可产生多少棵度数满足要求的树? Input 第一行为N(0 < N < = 1000),接下来N行,第i+1行给出第i个节点的度数Di,如果对度数不要求,则输入-1 Output 一个整数,表示不同的满足要求的树的个数,无解输出0 Sample Input 3 1 -1 -1 Sample Outp…
题目描述 给你\(n\)和\(n\)个点的度数,问你有多少个满足度数要求的生成树. 无解输出\(0\).保证答案不超过\({10}^{17}\). \(n\leq 150\) 题解 考虑prufer序列. 答案为 \[ \frac{(n-2)!}{\prod(d_i-1)!} \] 直接乘会爆long long,要转成\(n-1\)个组合数的乘积.当然你也可以分解质因数. 如果\(n\neq 1\)且\(d_i=1\),输出\(0\) 如果\(\sum d_i\neq 2n-2\),输出\(0\…