Solution -「多校联训」最小点覆盖】的更多相关文章

\(\mathcal{Description}\)   Link.   求含有 \(n\) 个结点的所有有标号简单无向图中,最小点覆盖为 \(m\) 的图的数量的奇偶性.\(T\) 组数据.   \(n,m\le3\times10^3\),\(T\le5\times10^3\). \(\mathcal{Solution}\)   太神了叭!   总不能硬刚 NPC,我们必须牢牢把握"奇偶性"带来的便利:若存在某种规则将一类图两两配对,则我们可以忽略这些图而不影响答案.顺便做一步转化,最…
\(\mathcal{Description}\)   给定排列 \(\{p_n\}\),可以在其上进行若干次操作,每次选取 \([l,r]\),把其中所有元素变为原区间最小值,求能够得到的所有不同序列数量.答案对 \((10^9+7)\) 取模.   \(n\le5\times10^3\). \(\mathcal{Solution}\)   一类题型一起写啦,再给出一道类似的题:   给定字符串 \(s\),\(s_i\in\{\text{'R'},\text{'G'},\text{'Y'}\…
\(\mathcal{Description}\)   Link.   给定二分图 \(G=(X\cup Y,E)\),求对于边的一个染色 \(f:E\rightarrow\{1,2,\dots,c\}\),最小化每个结点所染颜色数量极差之和.输出这一最小值.   \(|X|+|Y|,|E|\le10^6\). \(\mathcal{Solution}\)   基于"结论好猜"就能认为这题是签到题吗--   答案显然有下界 \(\sum_{u}\left[c\not\mid \sum_…
\(\mathcal{Description}\)   Link.   给定序列 \(\{a_n\}\),和 \(q\) 次形如 \([L,R]\) 的询问,每次回答 \[\sum_{[l,r]\subseteq [L,R]}\min_{i=l}^r\{a_i\}\cdot\max_{i=l}^r\{a_i\}\pmod{10^9+7}. \]   \(n,q\le10^5\). \(\mathcal{Solution}\)   瞬间联想到 这道题,尝试把询问挂到猫树上分治处理.对于分治区间 \…
\(\mathcal{Description}\)   Link.   给定 \(n\) 个函数,第 \(i\) 个有 \(f_i(x)=a_ix^3+b_ix^2+cx_i+d~(x\in[l_i,r_i]\cap\mathbb Z)\),还有 \(m\) 条形如 \(x_u\le x_v+d\) 的限制,请最大化 \(\sum_{i=1}^nf_i(x_i)\) 或声明无解.   \(n,|l_i|,|r_i|\le 100\). \(\mathcal{Solution}\)   很久没遇到…
\(\mathcal{Description}\)   Link.   平面上有 \(n\) 个点 \(A_{1..n}\),\(q\) 次询问,每次给出点 \(P\),求 \[\max_{1\le l\le r\le n}\left\{\sum_{i=l}^r \vec{OP}\times\vec{OA_i}\right\}. \]   \(n\le10^5\),\(q\le10^6\). \(\mathcal{Solution}\)   初步转化一下式子: \[\begin{aligned}…
\(\mathcal{Description}\)   Link.   一条地铁线路上共 \(m\) 个站点,\(n\) 个人乘坐地铁,第 \(i\) 个人需要从 \(s_i\) 站坐到 \(e_i\) 站.你可以指挥他们在保证不走回头路的情况下走到某个站,或指挥处于同一个站的两人交换地铁卡.一张从 \(x\) 站进站 \(y\) 站出站的地铁卡花费为 \(|x-y|\),最小化花费和并给出可行方案.   \(n\le10^5\),\(m\le10^6\),方案步骤数 \(\le 4\times…
\(\mathcal{Description}\)   Link.   在 NOIP 2020 A 的基础上,每条边赋权值 \(a_i\),随机恰好一条边断掉,第 \(i\) 条段的概率正比于 \(a_i\).求每个汇集口收集到污水的期望吨数.答案模 \(998244353\)(我谢谢出题人. \(\mathcal{Solution}\)   方法一 这个题麻烦的地方在于 DAG 上断边,很难将每条断边的贡献一起计算(注意不是"叠加",仅仅是一下子算出分别断开多条边的贡献之和).我们得…
\(\mathcal{Description}\)   Link.   破案了,朝鲜时蔬 = 超现实树!(指写得像那什么一样的题面.   对于整数集 \(X\),定义其 好子集 为满足 \(Y\subseteq X\land\left(\sum_{y\in Y}y\right)\mid\left(\sum_{x\in X}x\right)\) 的任意 \(Y\).求 \(S_n=[1,n]\cap\mathbb N\) 的所有 \(m\) 阶子集中,包含 \(k\) 阶 好子集 数量最多的子集数…
\(\mathcal{Description}\)   Link.   给定长度为 \(n\) 的合法表达式序列 \(s\),其中数字仅有一位正数,运算符仅有 - 作为占位.求将其中恰好 \(k\) 个 - 替换为 +,其余 - 替换为 * 的所有方案得到的表达式结果之和.答案模 \((10^9+7)\).   \(n\le10^5\)(可能有无意义的多层括号嵌套),- 的总数 \(m\le2.5\times10^3\). \(\mathcal{Solution}\)   复杂表达式问题,应当考…