softmax详解】的更多相关文章

原文地址:https://blog.csdn.net/bitcarmanlee/article/details/82320853 1.softmax初探 在机器学习尤其是深度学习中,softmax是个非常常用而且比较重要的函数,尤其在多分类的场景中使用广泛.他把一些输入映射为0-1之间的实数,并且归一化保证和为1,因此多分类的概率之和也刚好为1. 首先我们简单来看看softmax是什么意思.顾名思义,softmax由两个单词组成,其中一个是max.对于max我们都很熟悉,比如有两个变量a,b.如…
答案来自专栏:机器学习算法与自然语言处理 详解softmax函数以及相关求导过程 这几天学习了一下softmax激活函数,以及它的梯度求导过程,整理一下便于分享和交流. softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类! 假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个元素的softmax值就是 <img src="https://pic3.zhimg.com/50/v2-39eca1f…
答案来自专栏:机器学习算法与自然语言处理 详解softmax函数以及相关求导过程 这几天学习了一下softmax激活函数,以及它的梯度求导过程,整理一下便于分享和交流. softmax函数 softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类! 假设我们有一个数组,V,Vi表示V中的第i个元素,那么这个元素的softmax值就是 更形象的如下图表示: softmax直白来说就是将原来输出是3,1,-3通过softmax函数一作用,就映…
CNN详解 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7450413.html 前言 这篇博客主要就是卷积神经网络(CNN)的历史.模块.特点和架构等等 1. CNN历史 CNN最早可以追溯到1968Hubel和Wiesel的论文,这篇论文讲述猫和猴的视觉皮层含有对视野的小区域单独反应的神经元,如果眼睛没有移动,则视觉刺激影响单个神经元的视觉空间区域被称为其感受野(Receptive Field).相邻细胞具有相似和重叠…
基于双向BiLstm神经网络的中文分词详解及源码 基于双向BiLstm神经网络的中文分词详解及源码 1 标注序列 2 训练网络 3 Viterbi算法求解最优路径 4 keras代码讲解 最后 源代码地址 在自然语言处理中(NLP,Natural Language ProcessingNLP,Natural Language Processing),分词是一个较为简单也基础的基本技术.常用的分词方法包括这两种:基于字典的机械分词 和 基于统计序列标注的分词.对于基于字典的机械分词本文不再赘述,可…
卷积神经网络(CNN)详解与代码实现 本文系作者原创,转载请注明出处:https://www.cnblogs.com/further-further-further/p/10430073.html 目录 1.应用场景 2.卷积神经网络结构 2.1 卷积(convelution) 2.2 Relu激活函数 2.3 池化(pool) 2.4 全连接(full connection) 2.5 损失函数(softmax_loss) 2.6 前向传播(forward propagation) 2.7 反向…
来源商业新知网,原标题:代码详解:TensorFlow Core带你探索深度神经网络“黑匣子” 想学TensorFlow?先从低阶API开始吧~某种程度而言,它能够帮助我们更好地理解Tensorflow,更加灵活地控制训练过程.本文演示了如何使用低阶TensorFlow Core 搭建卷积神经网络(ConvNet)模型,并演示了使用TensorFlow编写自定义代码的方法. 对很多开发人员来说,神经网络就像一个“黑匣子”, 而TensorFlow Core的应用,则将我们带上了对深度神经网络后台…
Ren, Shaoqing, et al. “Faster R-CNN: Towards real-time object detection with region proposal networks.” Advances in Neural Information Processing Systems. 2015. 本文是继RCNN[1],fast RCNN[2]之后,目标检测界的领军人物Ross Girshick团队在2015年的又一力作.简单网络目标检测速度达到17fps,在PASCAL…
Girshick, Ross. “Fast r-cnn.” Proceedings of the IEEE International Conference on Computer Vision. 2015. 继2014年的RCNN之后,Ross Girshick在15年推出Fast RCNN,构思精巧,流程更为紧凑,大幅提升了目标检测的速度.在Github上提供了源码. 之所以提出Fast R-CNN,主要是因为R-CNN存在以下几个问题: 训练分多步.通过上一篇博文我们知道R-CNN的训练先…
Girshick, Ross, et al. “Rich feature hierarchies for accurate object detection and semantic segmentation.” Proceedings of the IEEE conference on computer vision and pattern recognition. 2014. R-CNN的全称是Region-CNN,它可以说是第一个成功将深度学习应用到目标检测上的算法.后面要讲到的Fast…