1,Introduction 1.1 What is Dynamic Programming? Dynamic:某个问题是由序列化状态组成,状态step-by-step的改变,从而可以step-by-step的来解这个问题.     Programming:是在已知环境动力学的基础上进行评估和控制,具体来说就是在了解包括状态和行为空间.转移概率矩阵.奖励等信息的基础上判断一个给定策略的价值函数,或判断一个策略的优劣并最终找到最优的策略和最优价值函数.     动态规划算法把求解复杂问题分解为求解…
在强化学习(四)用蒙特卡罗法(MC)求解中,我们讲到了使用蒙特卡罗法来求解强化学习问题的方法,虽然蒙特卡罗法很灵活,不需要环境的状态转化概率模型,但是它需要所有的采样序列都是经历完整的状态序列.如果我们没有完整的状态序列,那么就无法使用蒙特卡罗法求解了.本文我们就来讨论可以不使用完整状态序列求解强化学习问题的方法:时序差分(Temporal-Difference, TD). 时序差分这一篇对应Sutton书的第六章部分和UCL强化学习课程的第四讲部分,第五讲部分. 1. 时序差分TD简介 时序差…
原文地址: https://www.cnblogs.com/pinard/p/9529828.html -------------------------------------------------------------------------------------------------- 在强化学习(四)用蒙特卡罗法(MC)求解中,我们讲到了使用蒙特卡罗法来求解强化学习问题的方法,虽然蒙特卡罗法很灵活,不需要环境的状态转化概率模型,但是它需要所有的采样序列都是经历完整的状态序列.如果…
之前讲到Sarsa和Q Learning都不太适合解决大规模问题,为什么呢? 因为传统的强化学习都有一张Q表,这张Q表记录了每个状态下,每个动作的q值,但是现实问题往往极其复杂,其状态非常多,甚至是连续的, 比如足球场上足球的位置,此时,内存将无力承受这张Q表. 价值函数近似 既然Q表太大,那么怎么办呢? 假设我们可以找到一种方法来预测q值,那么在某个状态下,就可以估计其每个动作的q值,这样就不需要Q表了,这就是价值函数近似. 假设这个函数由参数w描述,那么 状态价值函数就表示为 v(s)≍f(…
如今的推荐系统,对于实时性的要求越来越高,实时推荐的流程大致可以概括为这样: 推荐系统对于用户的请求产生推荐,用户对推荐结果作出反馈 (购买/点击/离开等等),推荐系统再根据用户反馈作出新的推荐.这个过程中有两个值得关注的地方: 这可被视为是一个推荐系统和用户不断交互.互相影响的过程. 推荐系统需要对用户反馈作出快速及时的响应. 这两点本篇分别通过强化学习和 Flink 来实现,而在此之前先了解一些背景概念. 强化学习 强化学习领域的知名教材 <Reinforcement Learning: A…
强化学习之 免模型学习(model-free based learning) ------ 蒙特卡罗强化学习 与 时序查分学习 ------ 部分节选自周志华老师的教材<机器学习> 由于现实世界当中,很难获得环境的转移概率,奖赏函数等等,甚至很难知道有多少个状态.倘若学习算法是不依赖于环境建模,则称为“免模型学习(model-free learning)”,这比有模型学习要难得多. 1. 蒙特卡罗强化学习: 在免模型学习的情况下,策略迭代算法会遇到几个问题: 首先,是策略无法评估,因为无法做全…
强化学习 课程:Q-Learning强化学习(李宏毅).深度强化学习 强化学习是一种允许你创造能从环境中交互学习的AI Agent的机器学习算法,其通过试错来学习.如上图所示,大脑代表AI Agent并在环境中活动.当每次行动过后,Agent接收到环境反馈.反馈包括回报Reward和环境的下个状态State,回报由模型设计者定义.如果类比人类学习自行车,可以将车从起始点到当前位置的距离定义为回报. 分类: 1)基于价值Value的强化学习算法 - Q-learning 基本思想:根据当前的状态,…
本文内容来自以下两个链接: https://morvanzhou.github.io/tutorials/machine-learning/reinforcement-learning/ https://zhuanlan.zhihu.com/p/24446336?utm_source=weibo&utm_medium=social Q-learning Algorithm: 整个算法就是一直不断更新 Q table 里的值, 然后再根据新的值来判断要在某个 state 采取怎样的 action.…
什么是强化学习? 强化学习(Reinforcement learning,简称RL)是和监督学习,非监督学习并列的第三种机器学习方法,如下图示: 首先让我们举一个小时候的例子: 你现在在家,有两个动作选择:打游戏和读书.如果选择打游戏的话,你就跑到了网吧,选择读书的话,就坐在了书桌面前.你爸妈下班回家,如果发现你在网吧,就会给你一套社会主义的铁拳,如果你在书桌面前的话,就会买根棒棒糖给你吃. 首先,你在家的时候并不知道选择哪一个动作,因此你可能会选择study或者game.但是,当你接受了多次社…
源代码:https://github.com/higgsfield/RL-Adventure 在Pytorch1.4.0上解决bug后的复现版本:https://github.com/lucifer2859/DQN DQN Adventure: from Zero to State of the Art This is easy-to-follow step-by-step Deep Q Learning tutorial with clean readable code. The deep r…