转自:https://www.cnblogs.com/shenxiaolin/p/8854197.html 一.meshgrid函数 meshgrid函数通常使用在数据的矢量化上. 它适用于生成网格型数据,可以接受两个一维数组生成两个二维矩阵,对应两个数组中所有的(x,y)对. 示例展示: 由上面的示例展示可以看出,meshgrid的作用是: 根据传入的两个一维数组参数生成两个数组元素的列表. 如果第一个参数是xarray,维度是xdimesion, 第二个参数是yarray,维度是ydimes…
一.meshgrid函数 meshgrid函数通常使用在数据的矢量化上. 它适用于生成网格型数据,可以接受两个一维数组生成两个二维矩阵,对应两个数组中所有的(x,y)对. 示例展示: 由上面的示例展示可以看出,meshgrid的作用是: 根据传入的两个一维数组参数生成两个数组元素的列表. 如果第一个参数是xarray,维度是xdimesion, 第二个参数是yarray,维度是ydimesion. 那么生成的第一个二维数组是以xarray为行,共ydimesion行的向量: 而第二个二维数组是以…
近期在好几个地方都看到meshgrid的使用,虽然之前也注意到meshgrid的用法.但总觉得印象不深刻,不是太了解meshgrid的应用场景.所以,本文将进一步介绍Numpy中meshgrid的用法. Meshgrid函数的基本用法 在Numpy的官方文章里,meshgrid函数的英文描述也显得文绉绉的,理解起来有些难度.可以这么理解,meshgrid函数用两个坐标轴上的点在平面上画网格.用法: [X,Y]=meshgrid(x,y) [X,Y]=meshgrid(x)与[X,Y]=meshg…
矩阵(Matrix)和数组(Array)的区别主要有以下两点: 矩阵只能为2维的,而数组可以是任意维度的. 矩阵和数组在数学运算上会有不同的结构. 代码展示 1.矩阵的创建 采用mat函数创建矩阵 class numpy.mat(data, dtype=None) (注释:Unlike matrix, asmatrix does not make a copy if the input is already a matrix or an ndarray. Equivalent to matrix…
matrix() 和 array() 的区别,主要从以下方面说起: 1. 矩阵生成方式不同 import numpy as np a1 = np.array([[1, 2], [3, 4]]) b1 = np.mat([[1, 2], [3, 4]]) a2 = np.array(([1, 2], [3, 4])) b2 = np.mat(([1, 2], [3, 4])) a3 = np.array(((1,2), (3,4))) b3 = np.mat(((1,2), (3,4))) b4…
1.numpy乘法运算中"*"是数组元素逐个计算 >>> import numpy as np >>> a = np.array([[2,3],[3,4]]) >>> b = np.array([[3,4],[5,6]]) >>> c = a * b >>> c array([[ 6, 12], [15, 24]]) >>> 2.numpy乘法运算中dot是按照矩阵乘法的规则来运…
array和asarray都可以将结构数据转化为ndarray,但是主要区别就是当数据源是ndarray时,array仍然会copy出一个副本,占用新的内存,但asarray不会. 举例说明: import numpy as np #example 1: data1=[[1,1,1],[1,1,1],[1,1,1]] arr2=np.array(data1) arr3=np.asarray(data1) data1[1][1]=2 print 'data1:\n',data1 print 'ar…
转自:https://blog.csdn.net/Muzi_Water/article/details/85104941 mean和average都是计算均值的函数,在不指定权重的时候average和mean是一样的.指定权重后,average可以计算一维的加权平均值.具体如下: import numpy as np a = np.array([np.random.randint(0, 20, 5), np.random.randint(0, 20, 5)]) print('原始数据\n', a…
两者相似但执行相同的运算可能得到不同的结果 显然,array只能通过dot()实现"矩阵乘法",array的"*"运算实现的是两个纬度相同的"矩阵"的按位相乘. 而matrix则不同,可以直接使用"*"运算符实现"矩阵乘法",如下图: 注意,我们在数据处理中使用较多的是array.…
numpy.array()  标明array只是一个方法 ndarray 是类名,是一个实例. a=numpy.array(b)    #这是把变量b转换为数组a,这里array()是个方法,a的类型就是ndarray type(a)  #用type()方法可以返回:numpy.ndarray…