深度学习读书笔记之RBM 声明: 1)看到其他博客如@zouxy09都有个声明,老衲也抄袭一下这个东西 2)该博文是整理自网上很大牛和机器学习专家所无私奉献的资料的.具体引用的资料请看参考文献.具体的版本声明也参考原文献. 3)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应,更有些部分本来就是直接从其他博客复制过来的.如果某部分不小心侵犯了大家的利益,还望海涵,并联系老衲删除或修改,直到相关人士满意为止. 4)本人才疏学浅,整理总结的时候难免出错,还望各位前辈不吝指正,谢谢.…
Keras 重要特性 相同的代码可以在 CPU 或 GPU 上无缝切换运行. 具有用户友好的 API,便于快速开发深度学习模型的原型. 内置支持卷积网络(用于计算机视觉).循环网络(用于序列处理)以及二者的任意组合. 支持任意网络架构:多输入或多输出模型.层共享.模型共享等.这也就是说, Keras能够构建任意深度学习模型,无论是生成式对抗网络还是神经图灵机     Keras 有三个后端实现:  TensorFlow 后端.Theano 后端和微软认知工具包( CNTK, Microsoft…
神经网络剖析   训练神经网络主要围绕以下四个方面: 层,多个层组合成网络(或模型) 输入数据和相应的目标 损失函数,即用于学习的反馈信号 优化器,决定学习过程如何进行   如图 3-1 所示:多个层链接在一起组成了网络,将输入数 据映射为预测值.然后损失函数将这些预测值与目标进行比较,得到损失值,用于衡量网络预 测值与预期结果的匹配程度.优化器使用这个损失值来更新网络的权重.  …
标量(0D 张量) 仅包含一个数字的张量叫作标量(scalar,也叫标量张量.零维张量.0D 张量).在Numpy 中,一个float32 或float64 的数字就是一个标量张量(或标量数组).你可以用ndim 属性 来查看一个Numpy 张量的轴的个数.标量张量有0 个轴(ndim == 0).张量轴的个数也叫作 阶(rank).下面是一个Numpy 标量. >>> import numpy as np >>> x = np.array(12) >>&g…
人工智能 什么是人工智能.机器学习与深度学习(见图1-1)?这三者之间有什么关系?…
MNIST 数据集 包含60 000 张训练图像和10 000 张测试图像,由美国国家标准与技术研究院(National Institute of Standards and Technology,即MNIST 中 的NIST)在20 世纪80 年代收集得到.   类和标签 在机器学习中,分类问题中的某个类别叫作类(class).数据点叫作样本(sample).某 个样本对应的类叫作标签(label).…
- 通常机器学习,目的是,找到一个函数,针对任何输入:语音,图片,文字,都能够自动输出正确的结果. - 而我们可以弄一个函数集合,这个集合针对同一个猫的图片的输入,可能有多种输出,比如猫,狗,猴子等,而我们通过提供大量的training data给这个函数集合,对集合里的各种函数组合的输出进行比对,最后选出一个能输出最佳结果(结果是猫)的组合,那么因为这个组合已经很能够很准确的识别猫,所以这个组合就能用来检测图片里是否是猫. - 具体来说,下面第一张图,某一个点为一个函数,而整个网络机构为函数集…
电影评论分类:二分类问题   加载 IMDB 数据集 from keras.datasets import imdb (train_data, train_labels), (test_data, test_labels) = imdb.load_data(num_words=10000)   将整数序列编码为二进制矩阵(One-hot编码) import numpy as np def vectorize_sequences(sequences, dimension=10000): resul…
深度学习word2vec笔记之算法篇 声明:  本文转自推酷中的一篇博文http://www.tuicool.com/articles/fmuyamf,若有错误望海涵 前言 在看word2vec的资料的时候,经常会被叫去看那几篇论文,而那几篇论文也没有系统地说明word2vec的具体原理和算法,所以老衲就斗胆整理了一个笔记,希望能帮助各位尽快理解word2vec的基本原理,避免浪费时间. 当然如果已经了解了,就随便看看得了. 一. CBOW加层次的网络结构与使用说明 Word2vec总共有两种类…
开始本节学习笔记之前,先说几句题外话.其实对于C语言深度解剖这本书来说,看完了有一段时间了,一直没有时间来写这篇博客.正巧还刚刚看完了国嵌唐老师的C语言视频,觉得两者是异曲同工,所以就把两者一起记录下来.等更新完这七章的学习笔记,再打算粗略的看看剩下的一些C语言的书籍. 本节知识: 1.c语言中一共有32个关键字,分别是:auto.int.double.long.char.short.float.unsigned.signed.sizeof.extern.static.goto.if.else.…
对于本节的函数内容其实就没什么难点了,但是对于函数这节又涉及到了顺序点的问题,我觉得可以还是忽略吧. 本节知识点: 1.函数中的顺序点:f(k,k++);  这样的问题大多跟编译器有关,不要去刻意追求.  这里给下顺序点的定义:顺序点是执行过程中修改变量值的最后时刻.在程序到达顺序点的时候,之前所做的一切操作都必须反应到后续的访问中. 2.函数参数:函数的参数是存储在这个函数的栈上面的(对于栈可以看上篇文章<内存管理的艺术>),是实参的拷贝. 3.函数的可变参数: a.对于可变参数要包含sta…
# 强化学习读书笔记 - 02 - 多臂老O虎O机问题 学习笔记: [Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016](https://webdocs.cs.ualberta.ca/~sutton/book/) ## 数学符号的含义 * 通用 $a$ - 行动(action). $A_t$ - 第t次的行动(select action).通常指求解的…
强化学习读书笔记 - 05 - 蒙特卡洛方法(Monte Carlo Methods) 学习笔记: Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016 数学符号看不懂的,先看看这里: 强化学习读书笔记 - 00 - 数学符号说明 蒙特卡洛方法简话 蒙特卡洛是一个赌城的名字.冯·诺依曼给这方法起了这个名字,增加其神秘性. 蒙特卡洛方法是一个计算方法,被广泛…
强化学习读书笔记 - 06~07 - 时序差分学习(Temporal-Difference Learning) 学习笔记: Reinforcement Learning: An Introduction, Richard S. Sutton and Andrew G. Barto c 2014, 2015, 2016 数学符号看不懂的,先看看这里: 强化学习读书笔记 - 00 - 术语和数学符号 时序差分学习简话 时序差分学习结合了动态规划和蒙特卡洛方法,是强化学习的核心思想. 时序差分这个词不…
深度学习word2vec笔记之基础篇 声明: 1)该博文是多位博主以及多位文档资料的主人所无私奉献的论文资料整理的.具体引用的资料请看参考文献.具体的版本声明也参考原文献 2)本文仅供学术交流,非商用.所以每一部分具体的参考资料并没有详细对应,更有些部分本来就是直接从其他博客复制过来的.如果某部分不小心侵犯了大家的利益,还望海涵,并联系老衲删除或修改,直到相关人士满意为止. 3)本人才疏学浅,整理总结的时候难免出错,还望各位前辈不吝指正,谢谢. 4)阅读本文需要机器学习.语言模型等等基础(如果没…
作者为falao_beiliu. 作者:杨超链接:http://www.zhihu.com/question/21661274/answer/19331979来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 最近几位google的研究人员发布了一个工具包叫word2vec,利用神经网络为单词寻找一个连续向量空间中的表示.这里整理一下思路,供有兴趣的同学参考. 这里先回顾一下大家比较熟悉的N-gram语言模型. 在自然语言任务里我们经常要计算一句话的概率.比如语音识别…
深度学习课程笔记(十八)Deep Reinforcement Learning - Part 1 (17/11/27) Lectured by Yun-Nung Chen @ NTU CSIE 2018-08-11 13:42:23 This video can be found from: https://www.youtube.com/watch?v=yQdD_R_I6vc  Slides: https://www.csie.ntu.edu.tw/~yvchen/f106-adl/doc/1…
深度学习课程笔记(十七)Meta-learning (Model Agnostic Meta Learning) 2018-08-09 12:21:33 The video tutorial can be found from: Model Agnostic Meta Learning Related Videos: My talk for Model Agnostic Meta Learning with domain adaptation Paper: https://arxiv.org/p…
深度学习课程笔记(十六)Recursive Neural Network  2018-08-07 22:47:14 This video tutorial is adopted from: Youtube =====>>  问题是:language 到底是否是 recursive 的呢? ======>> 上述几个图,就展示了这个语法树的成长过程... ================================================== ========>&g…
深度学习课程笔记(十五)Recurrent Neural Network 2018-08-07 18:55:12 This video tutorial can be found from: Youtube  Issue: 传统方法中,当你的训练数据中,没有那么丰富的 training data,那么可能会导致部分数据的预测为 0,如上图所示.为了不让它变成 0,所以,我们给它一个非常小的 value,如:0.0001.但是这种给定的低概率的 value,是相当不准确的. 所以,我们想能否有一种…
深度学习课程笔记(十四)深度强化学习 ---  Proximal Policy Optimization (PPO) 2018-07-17 16:54:51  Reference: https://blog.openai.com/openai-baselines-ppo/ Code: https://github.com/openai/baselines Paper: https://arxiv.org/pdf/1707.06347.pdf Video Tutorials: https://ww…
深度学习课程笔记(十三)深度强化学习 --- 策略梯度方法(Policy Gradient Methods) 2018-07-17 16:50:12 Reference:https://www.youtube.com/watch?v=z95ZYgPgXOY&t=512s…
深度学习课程笔记(十)Q-learning (Continuous Action) 2018-07-10 22:40:28 reference:https://www.youtube.com/watch?v=tnPVcec22cg…
深度学习课程笔记(九)VAE 相关推导和应用 2018-07-10 22:18:03 Reference: 1. TensorFlow code: https://jmetzen.github.io/2015-11-27/vae.html 2. Paper: https://arxiv.org/pdf/1312.6114.pdf…
深度学习课程笔记(八)GAN 公式推导 2018-07-10  16:15:07…
深度学习课程笔记(十二) Matrix Capsule with EM Routing  2018-02-02  21:21:09  Paper: https://openreview.net/pdf/99b7cb0c78706ad8e91c13a2242bb15b7de325ad.pdf  Blog: https://jhui.github.io/2017/11/14/Matrix-Capsules-with-EM-routing-Capsule-Network/  [Abstract] 一个…
深度学习课程笔记(七):模仿学习(imitation learning) 2017.12.10 本文所涉及到的 模仿学习,则是从给定的展示中进行学习.机器在这个过程中,也和环境进行交互,但是,并没有显示的得到 reward.在某些任务上,也很难定义 reward.如:自动驾驶,撞死一人,reward为多少,撞到一辆车,reward 为多少,撞到小动物,reward 为多少,撞到 X,reward 又是多少,诸如此类...而某些人类所定义的 reward,可能会造成不可控制的行为,如:我们想让 a…
深度学习课程笔记(十一)初探 Capsule Network  2018-02-01  15:58:52 一.先列出几个不错的 reference: 1. https://medium.com/ai%C2%B3-theory-practice-business/understanding-hintons-capsule-networks-part-i-intuition-b4b559d1159b 2. https://medium.com/ai%C2%B3-theory-practice-bus…
深度学习课程笔记(六)Error Variance and Bias: 本文主要是讲解方差和偏差: error 主要来自于这两个方面.有可能是: 高方差,低偏差: 高偏差,低方差: 高方差,高偏差: 低方差,低偏差--- 这是理想情况 ================================================================================= 随着模型复杂度的上升,那么,bias 会逐渐降低的.…
深度学习课程笔记(五)Ensemble  2017.10.06 材料来自: 首先提到的是 Bagging 的方法: 我们可以利用这里的 Bagging 的方法,结合多个强分类器,来提升总的结果.例如: 通过这种求平均的方法,可以得到更加接近 真实值的输出. 我们可以对训练数据集进行随机采样,构建四个子数据集,然后分别对这些数据进行分类器的训练,得到多个强分类器. 上面是训练的情况,当测试的时候,我们可以将多个分类器的结果综合起来,得到最终的结果. ==>> 这些方法在你的模型比较复杂,容易过拟…