对 Potsdam and Vaihingen 公开数据集进行处理,得到了SOTA的结果,超越DeepLab_v3+,提出的网络结构如下:结合了ASPP和FCN,UNet…
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun  The 13th European Conference on Computer Vision (ECCV), 2014 声明:本文所有图片均来自原始文章,自己的理解也未必正确,请查看原图并拍砖 本文的两个亮点: 1. 多尺度训练CN…
在学习r-cnn系列时,一直看到SPP-net的身影,许多有疑问的地方在这篇论文里找到了答案. 论文:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 转自:http://blog.csdn.net/xzzppp/article/details/51377731 另可参考:http://zhangliliang.com/2014/09/13/paper-note-sppnet/ http:/…
想直接看公式的可跳至第三节 3.公式修正 一.为什么需要SPP 首先需要知道为什么会需要SPP. 我们都知道卷积神经网络(CNN)由卷积层和全连接层组成,其中卷积层对于输入数据的大小并没有要求,唯一对数据大小有要求的则是第一个全连接层,因此基本上所有的CNN都要求输入数据固定大小,例如著名的VGG模型则要求输入数据大小是 (224*224) . 固定输入数据大小有两个问题: 1.很多场景所得到数据并不是固定大小的,例如街景文字基本上其高宽比是不固定的,如下图示红色框出的文字. 2.可能你会说可以…
Spatial pyramid pooling in deep convolutional networks for visual recognition 作者: Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun 引用: He, Kaiming, et al. "Spatial pyramid pooling in deep convolutional networks for visual recognition." IEEE…
基于空间金字塔池化的卷积神经网络物体检测 原文地址:http://blog.csdn.net/hjimce/article/details/50187655 作者:hjimce 一.相关理论 本篇博文主要讲解大神何凯明2014年的paper:<Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition>,这篇paper主要的创新点在于提出了空间金字塔池化.paper主页:http://researc…
一直对Fast RCNN中ROI Pooling层不解,不同大小的窗口输入怎么样才能得到同样大小的窗口输出呢,今天看到一篇博文讲得挺好的,摘录一下,方便查找. Introduction 在一般的CNN结构中,在卷积层后面通常连接着全连接.而全连接层的特征数是固定的,所以在网络输入的时候,会固定输入的大小(fixed-size).但在现实中,我们的输入的图像尺寸总是不能满足输入时要求的大小.然而通常的手法就是裁剪(crop)和拉伸(warp). 这样做总是不好的:图像的纵横比(ratio aspe…
sppnet不讲了,懒得写...直接上代码 from math import floor, ceil import torch import torch.nn as nn import torch.nn.functional as F class SpatialPyramidPooling2d(nn.Module): r"""apply spatial pyramid pooling over a 4d input(a mini-batch of 2d inputs with…
http://www.dengfanxin.cn/?p=403 原文地址 我对物体检测的一篇重要著作SPPNet的论文的主要部分进行了翻译工作.SPPNet的初衷非常明晰,就是希望网络对输入的尺寸更加灵活,分析到卷积网络对尺寸并没有要求,固定尺寸的要求完全来源于全连接层部分,因而借助空间金字塔池化的方法来衔接两者,SPPNet在检测领域的重要贡献是避免了R-CNN的变形.重复计算等问题,在效果不衰减的情况下,大幅提高了识别速度.   用于视觉识别的深度卷积网络空间金字塔池化方法 Spatial…
论文标题:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 标题翻译:用于视觉识别的深度卷积神经网络中的空间金字塔池 论文作者:Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun 论文地址:https://arxiv.org/pdf/1406.4729.pdf SPP的GitHub地址:https://github.com/yueruc…