决策树(下)-Xgboost】的更多相关文章

参考资料(要是对于本文的理解不够透彻,必须将以下博客认知阅读,方可更加了解Xgboost): 1.对xgboost的理解(参考资料1和4是我认为对Xgboost理解总结最透彻的两篇文章,其根据作者paper总结!) 2.手动还原XGBoost实例过程(提供了一个实例,方便读者更加了解算法过程) 3.手写xgboost(利用python手写实现xgb) 4.XGBoost超详细推导(参考资料1和4是我认为对Xgboost理解总结最透彻的两篇文章)  目录 一.什么是XGBoost? 二.XGBoo…
摘要: 1.所需工具 2.详细过程 3.验证 4.使用指南 5.参数调优 内容: 1.所需工具 我用到了git(内含git bash),Visual Studio 2012(10及以上就可以),xgboost源码(0.4版本),java 环境还需要maven 附:Visual Studio 2012下载 xgboost源码(0.4版本)链接:http://pan.baidu.com/s/1i4Kem5B 密码:ieox 2.详细过程 在windows文件里面打开sln文件 , 选release…
初始环境 在安装之前,我的anaconda2已经安装好,git也有装好 下载相对应的xgboost.dll文件 下载地址 Installing the Python Wrapper for me: xgboost_install_dir = D:\Python\algorithm git clone https://github.com/dmlc/xgboost.git xgboost_install_dir copy xgboost.dll (downloaded from this page…
 本篇文章主要介绍下Xgboost算法的原理和公式推导.关于XGB的一些应用场景在此就不赘述了,感兴趣的同学可以自行google.下面开始: 1.模型构建 构建最优模型的方法一般是最小化训练数据的损失函数,用L表示Loss Function(),F是假设空间: \[ L = min_{f \in F} \ \frac{1}{N}\sum_{i=1}^{N}L(y_i,f(x_i)) \quad \text{(1)} \] 上述(1)式就是俗称的经验风险最小化,当训练数据集较小时,很容易过拟合,所…
从决策树.随机森林.GBDT最终到XGBoost,每个热门算法都不是孤立存在的,而是基于一系列算法的改进与优化.决策树算法简单易懂可解释性强,但是过拟合风险很大,应用场景有限:随机森林采用Bagging采样+随机属性选择+模型集成的方法解决决策树易过拟合的风险,但是牺牲了可解释性:GBDT在随机森林的基础上融合boosting的思想建立树与树之间的联系,使森林不再是互相独立的树存在,进而成为一种有序集体决策体系:XGBoost在GBDT的基础上更进一步,将每轮迭代的目标函数中加入正则项,进一步降…
概述 GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的结论累加起来做最终答案.它在被提出之初就和SVM一起被认为是泛化能力较强的算法.GBDT中的树是回归树(不是分类树),GBDT用来做回归预测,调整后也可以用于分类. 集成学习==>提升方法族==>梯度提升方法==>以决策树作为基学习器的梯度提升方法 集成学习 集成学习…
http://www.jianshu.com/p/005a4e6ac775 综述   GBDT(Gradient Boosting Decision Tree) 又叫 MART(Multiple Additive Regression Tree),是一种迭代的决策树算法,该算法由多棵决策树组成,所有树的结论累加起来做最终答案.它在被提出之初就和SVM一起被认为是泛化能力较强的算法.  GBDT中的树是回归树(不是分类树),GBDT用来做回归预测,调整后也可以用于分类.  GBDT的思想使其具有天…
问题: 用xgboost/gbdt在在调参的时候把树的最大深度调成6就有很高的精度了.但是用DecisionTree/RandomForest的时候需要把树的深度调到15或更高.用RandomForest所需要的树的深度和DecisionTree一样我能理解,因为它是用bagging的方法把DecisionTree组合在一起,相当于做了多次DecisionTree一样.但是xgboost/gbdt仅仅用梯度上升法就能用6个节点的深度达到很高的预测精度,使我惊讶到怀疑它是黑科技了.请问下xgboo…
在两年半之前作过梯度提升树(GBDT)原理小结,但是对GBDT的算法库XGBoost没有单独拿出来分析.虽然XGBoost是GBDT的一种高效实现,但是里面也加入了很多独有的思路和方法,值得单独讲一讲.因此讨论的时候,我会重点分析和GBDT不同的地方. 本文主要参考了XGBoost的论文和陈天奇的PPT. 1. 从GBDT到XGBoost 作为GBDT的高效实现,XGBoost是一个上限特别高的算法,因此在算法竞赛中比较受欢迎.简单来说,对比原算法GBDT,XGBoost主要从下面三个方面做了优…
转载地址:https://blog.csdn.net/u014248127/article/details/79015803 RF,GBDT,XGBoost,lightGBM都属于集成学习(Ensemble Learning),集成学习的目的是通过结合多个基学习器的预测结果来改善基本学习器的泛化能力和鲁棒性. 根据基本学习器的生成方式,目前的集成学习方法大致分为两大类:即基本学习器之间存在强依赖关系.必须串行生成的序列化方法,以及基本学习器间不存在强依赖关系.可同时生成的并行化方法:前者的代表就…