numpy 数组运算】的更多相关文章

一.四则运算   (以此为例) 1.加法 2.减法 3.乘法 4.除法 5.幂运算 二.比较运算   (以此为例) 1.<   > 2.>=    <= 3.==    != 三.逻辑运算 all(等同and) any(等同or) NumPY中 all 表示逻辑and,any表示逻辑or 四.广播机制 在进行数组结构不相同的运算时 1.让所有输入数组向最长的数组看齐,shape(结构)不足的用1补齐 2.输出数组shape是输入数组shape各轴上的最大值 3当输入数组之间某个轴相…
数组的减法:不同维数…
Python的Numpy数组运算中,有时会出现按axis进行运算的情况,如 >>> x = np.array([[1, 1], [2, 2]]) >>> x array([[1, 1], [2, 2]]) >>> x.sum(axis=0)%x.sum(axis=1) 自己初学时,容易搞混axis=0到底代表的是按行运算还是按列运算,而且这仅是针对二维数组情况,更高维数组就无法仅仅用行列来区分了. 经过自己的研究和实践后,谈一下自己的理解,读者如有不赞…
numpy数组的运算 数组的乘法 >>> import numpy as np >>> arr=np.array([[1,2,3],[4,5,6]]) >>> arr array([[1, 2, 3], [4, 5, 6]]) >>> arr*arr array([[ 1, 4, 9], [16, 25, 36]]) 数组的减法 >>> arr-arr array([[0, 0, 0], [0, 0, 0]]) 数组…
在Numpy中建立了数组或者矩阵后,需要访问数组里的成员,改变元素,并对数组进行切分和计算. 索引和切片 Numpy数组的访问模式和python中的list相似,在多维的数组中使用, 进行区分: 在python的list 下: a = [1,2,4] print a[2:] 打印出: [4] 这是一个数组,在Numpy的多维数组中也采用相同的模式进行数组的访问: import numpy as np a = np.arange(1,37) a = a.reshape(6,6) print a 打…
numpy - 介绍.基本数据类型.多维数组ndarray及其内建函数 http://blog.csdn.net/pipisorry/article/details/22107553 http://www.verydemo.com/demo_c441_i137157.html numpy数组的创建.属性.操作和运算 http://www.cnblogs.com/saieuler/p/3366594.html Numpy基本操作汇总 http://www.cnblogs.com/zhangjing…
可以来我的Github看原文,欢迎交流. https://github.com/AsuraDong/Blog/blob/master/Articles/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0/numpy%E6%95%B0%E7%BB%84%E3%80%81%E5%90%91%E9%87%8F%E3%80%81%E7%9F%A9%E9%98%B5%E8%BF%90%E7%AE%97.md import numpy as np import pandas as pd…
前几篇博文我写了数组创建和数据运算,现在我们就来看一下数组对象的操作方法.使用索引和切片的方法选择元素,还有如何数组的迭代方法. 一.索引机制 1.一维数组 In [1]: a = np.arange(10,16) In [2]: a Out[2]: array([10, 11, 12, 13, 14, 15]) #使用正数作为索引 In [3]: a[3] Out[3]: 13 #还可以使用负数作为索引 In [4]: a[-4] Out[4]: 12 #方括号中传入多数索引值,可同时选择多个…
操作 numpy 数组的常用函数 where 使用 where 函数能将索引掩码转换成索引位置: indices = where(mask) indices => (array([11, 12, 13, 14]),) x[indices] # this indexing is equivalent to the fancy indexing x[mask] => array([ 5.5, 6. , 6.5, 7. ]) diag 使用 diag 函数能够提取出数组的对角线: diag(A) =…
系列文章地址 NumPy 最详细教程(1):NumPy 数组 NumPy 超详细教程(2):数据类型 NumPy 超详细教程(3):ndarray 的内部机理及高级迭代 文章目录 Numpy 数组:ndarrayNumPy 数组属性1.ndarray.shape2.ndarray.ndim3.ndarray.flags4.ndarray.realNumPy 中的常数NumPy 创建数组1.numpy.empty2.numpy.zeros3.numpy.ones4.numpy.fullNumPy…