POJ1811 给一个大数,判断是否是素数,如果不是素数,打印出它的最小质因数 随机素数测试(Miller_Rabin算法) 求整数素因子(Pollard_rho算法) 科技题 #include<cstdlib> #include<cstdio> ; ; int tot; long long n; long long factor[maxn]; long long muti_mod(long long a,long long b,long long c) { //(a*b) mod…
题目描述 Give you a lot of positive integers, just to find out how many prime numbers there are.. In each case, there is an integer N representing the number of integers to find. Each integer won’t exceed 32-bit signed integer, and each of them won’t be…
Prime Test Time Limit: 6000MS Memory Limit: 65536K Total Submissions: 29193 Accepted: 7392 Case Time Limit: 4000MS Description Given a big integer number, you are required to find out whether it's a prime number. Input The first line contains the num…
Eddy's research I Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 6664    Accepted Submission(s): 3997 Problem Description Eddy's interest is very extensive, recently he is interested in prime…
Prime Test Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 29046   Accepted: 7342 Case Time Limit: 4000MS Description Given a big integer number, you are required to find out whether it's a prime number. Input The first line contains the…
素数判定Miller_Rabin算法详解: http://blog.csdn.net/maxichu/article/details/45458569 大数因数分解Pollard_rho算法详解: http://blog.csdn.net/maxichu/article/details/45459533 然后是参考了kuangbin的模板: http://www.cnblogs.com/kuangbin/archive/2012/08/19/2646396.html 模板如下: //快速乘 (a…
费马定理的逆定理几乎可以用来判断一个数是否为素数,但是有一些数是判断不出来的,因此,Miller_Rabin测试方法对费马的测试过程做了改进,克服其存在的问题. 推理过程如下(摘自维基百科): 摘自另一篇博文(手动滑稽): 原理明白了,就直接上代码了(KuangBin大神的板子): 代码思路是, Miller_Rabin()函数随机选取 s 个a,a用做“基底” check() 函数是用来判断x是否等于1,也就是判断a是否是n的凭证. Mul_mod()函数是 快速乘 ,求 a^t % n 之后…
题目链接:http://poj.org/problem?id=1811 题目解析:2<=n<2^54,如果n是素数直接输出,否则求N的最小质因数. 求大整数最小质因数的算法没看懂,不打算看了,直接贴代码,以后当模版用. 数据比较大,只能先用Miller_Rabin算法进行素数判断. 在用Pollard_rho分解因子.   #include <iostream> #include <stdio.h> #include <string.h> #include…
用来干嘛的 ​   要判断一个数 \(n\) 是否为素数,最朴素直接的办法是以\(O(\sqrt n)\) 时间复杂度地从2到 \(\sqrt n\) 循环即可得到最准确的结果.但是如果在 \(n\) 比较大的情况下,时间花销就太大了.这时,我们可以选择牺牲一点点准确度,使用可爱的米勒-拉宾(Miller-Rabin)素性检验算法来判断质数.根据百度百科,使用快速幂运算,这个算法的时间复杂度是 \(O(k\log^3 n)\)的,\(k\)是我们设定对一个数的进行测试的次数.\(k\) 越大,判…
//**************************************************************** // Miller_Rabin 算法进行素数测试 //速度快,而且可以判断 <2^63的数 //**************************************************************** ;//随机算法判定次数,S越大,判错概率越小 LL mult_mod(LL a,LL b,LL mod) //(a*b)%c a,b,c<…