keras 中如何自定义损失函数】的更多相关文章

http://lazycoderx.com/2016/10/09/keras%E4%BF%9D%E5%AD%98%E6%A8%A1%E5%9E%8B%E6%97%B6%E4%BD%BF%E7%94%A8%E8%87%AA%E5%AE%9A%E4%B9%89%E6%8D%9F%E5%A4%B1%E5%87%BD%E6%95%B0/ http://www.voidcn.com/blog/zjm750617105/article/p-5954719.html…
在keras中保存模型有几种方式: (1):使用callbacks,可以保存训练中任意的模型,或选择最好的模型 logdir = './callbacks' if not os.path.exists(logdir): os.mkdir(logdir) output_model_file = os.path.join(logdir, "xxxx.h5") callbacks = [ tf.keras.callbacks.ModelCheckpoint(output_model_file…
最近在学习SSD的源码,其中有两个自定的层,特此学习一下并记录. import keras.backend as K from keras.engine.topology import InputSpec from keras.engine.topology import Layer import numpy as np class L2Normalization(Layer): ''' Performs L2 normalization on the input tensor with a l…
用keras搭好模型架构之后的下一步,就是执行编译操作.在编译时,经常需要指定三个参数 loss optimizer metrics 这三个参数有两类选择: 使用字符串 使用标识符,如keras.losses,keras.optimizers,metrics包下面的函数 例如: sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.compile(loss='categorical_crossentropy', opt…
写这篇博客的原因主要是为了总结下在深度学习中我们常会遇到的一些问题,以及不知道如何解决,我准备把这个部分作为一个系列,为了让大家少走一些坑,对于本博客有什么错误,欢迎大家指出,下面切入正题吧. 1. 深度学习,一个令人头疼的问题就是如何调参? 简而言之,如果数据集复杂的话,那么就要增加网络的层数,模型欠拟合了,加节点. 2. 关于验证集的loss曲线和acc曲线震荡,不平滑问题 出现loss震荡不平滑的原因可能如下: (1) 学习率可能太大 (2) batch size太小 (3) 样本分布不均…
Keras的核心原则是逐步揭示复杂性,可以在保持相应的高级便利性的同时,对操作细节进行更多控制.当我们要自定义fit中的训练算法时,可以重写模型中的train_step方法,然后调用fit来训练模型. 这里以tensorflow2官网中的例子来说明: import numpy as np import tensorflow as tf from tensorflow import keras x = np.random.random((1000, 32)) y = np.random.rando…
正好在参加携程的比赛,用的xgboost的算法,但携程比赛的测评函数比较奇怪,不是传统的那些,而是取precision≥0.97的情况下,recall的最大值.那无疑这个测评函数是要自己写的(官方没给),可是我怎么把它放进xgboost里呢?这样我设置silent=1时,我每一步都能看到train和eval上的结果. 起初以为在param里定义了就行,但屡屡报错,后来终于找到了方法. 首先是metric的写法(直接拿携程比赛那个来说吧): def maxRecall(preds,dtrain):…
这个自定义损失函数的背景:(一般回归用的损失函数是MSE, 但要看实际遇到的情况而有所改变) 我们现在想要做一个回归,来预估某个商品的销量,现在我们知道,一件商品的成本是1元,售价是10元. 如果我们用均方差来算的话,如果预估多一个,则损失一块钱,预估少一个,则损失9元钱(少赚的). 显然,我宁愿预估多了,也不想预估少了. 所以,我们就自己定义一个损失函数,用来分段地看,当yhat 比 y大时怎么样,当yhat比y小时怎么样. (yhat沿用吴恩达课堂中的叫法)   import tensorf…
深度学习的优化算法,说白了就是梯度下降.每次的参数更新有两种方式. 一. 第一种,遍历全部数据集算一次损失函数,然后算函数对各个参数的梯度,更新梯度.这种方法每更新一次参数都要把数据集里的所有样本都看一遍,计算量开销大,计算速度慢,不支持在线学习,这称为Batch gradient descent,批梯度下降. 二. 另一种,每看一个数据就算一下损失函数,然后求梯度更新参数,这个称为随机梯度下降,stochastic gradient descent.这个方法速度比较快,但是收敛性能不太好,可能…
tensflow 不仅支持经典的损失函数,还可以优化任意的自定义损失函数. 预测商品销量时,如果预测值比真实销量大,商家损失的是生产商品的成本:如果预测值比真实值小,损失的则是商品的利润. 比如如果一个商品的成本是1元,但利润是10元,那么少预测一个就少赚9元:而多预测一个才亏1元,为了最大化利润预期,需要将损失函数和利润直接联系起来.注意损失函数 定义的是损失,所以要将利润最大化,定义的损失函数应该刻成本或者代价.下面给出了一个当预测多于真实值和预测少于真实值时有不同损失系数和损失函数: im…