二值图像的细化算法也有很多种,比较有名的比如Hilditch细化.Rosenfeld细化.基于索引表的细化.还有Opencv自带的THINNING_ZHANGSUEN.THINNING_GUOHALL喜欢等等.这些都属于迭代的细化方式,当然还有一种是基于二值图像距离变换的细化方法,二值想比较,我个人认为是基于迭代的效果稳定.可靠,但是速度较慢,且速度和图片的内容有关,基于距离变换的版本,优点是速度稳定,但是效果差强人意.本文这里还是选择基于迭代的方式予以实现. 相关的参考文章有:http://c…
摘自本人毕业论文<肺结节CT影像特征提取算法研究> 医学图像特征提取可以认为是基于图像内容提取必要特征,医学图像中需要什么特征基于研究需要,提取合适的特征.相对来说,医学图像特征提取要求更加高,因为对医生的辅助诊断起着至关重要的作用,所以需要严谨可靠的特征.肺结节CT影像特征提取也是属于医学图像特征提取领域的一个部分,有着医学图像特征提取的基本要求.既有其他医学图像特征提取的方法,也有针对肺结节的特定特征提取方法.本小节主要对一些常用的肺结节CT影像医学图像特征提取方法进行介绍,主要可以分为灰…
之前的文章讲述了肺结节CT影像数据特征提取算法及基于MATLAB GUI设计的肺结节CT影像特征提取系统.本文将讲述几个主要部分的代码实现,分别是预处理.灰度特征提取.纹理特征提取.形态特征提取数据. 一.预处理部分代码 1.读取肺结节CT数据和专家标记的mask数据 function [ sData ] = read_dcm_mask( dcmPath,maskPath,Ng ) function [ sData ] = read_dcm_mask( dcmPath,maskPath,Ng )…
肺结节的特征提取在临床中有着重要应用,在上篇文章已经对肺结节的基本特征和CT影像特征提取算法有了介绍,提出了三类肺结节CT影像特征提取算法.本文重点介绍肺结节CT影像特征提取系统的功能介绍及使用,利用肺结节CT影像特征提取系统对一些数据进行特征提取,检验特征提取算法的有效性. 一.肺结节特征提取算法流程 图1 算法流程图 首先,对原始的肺部CT影像数据和放射学家标记的肺结节数据进行预处理,得到标准化的肺部CT影像数据和标记数据:然后,计算得到肺结节区域,用于后续特征提取:接着针对肺结节区域做不同…
在博客肺结节CT影像特征提取中,已经实现了肺结节的灰度.纹理和形态特征的提取.但是,对于进一步了解ROI区域像素值或者说CT值的分布来说,还存在一定的不足,不能够很好的显示ROI区域. 因此,本文将进一步对ROI区域进行处理,实现ROI区域的图形化显示.主要包含灰度直方图和ROI区域图形化. 1.1  ROI区域灰度直方图 灰度直方图是描述像素值分布的一种图形,根据灰度级各个值的像素分布比例所画出的一种直方图.这里,为了更加直观看到每个灰度级像素的个数,横轴采用灰度级,纵轴为像素个数. 根据前几…
部分 V图像特征提取与描述 OpenCV-Python 中文教程(搬运)目录 34 角点检测的 FAST 算法 目标 • 理解 FAST 算法的基础 • 使用 OpenCV 中的 FAST 算法相关函数进行角点检测原理 我们前面学习了几个特征检测器,它们大多数效果都很好.但是从实时处理的角度来看,这些算法都不够快.一个最好例子就是 SLAM(同步定位与地图构建),移动机器人,它们的计算资源非常有限.为了解决这个问题,Edward_Rosten 和 Tom_Drummond 在 2006 年提出里…
特征提取是计算机视觉和图像处理中的一个概念.它指的是使用计算机提取图像信息,决定每个图像的点是否属于一个图像特征.特征提取的结果是把图像上的点分为不同的子集,这些子集往往属于孤立的点.连续的曲线或者连续的区域. 特征的定义:         至今为止特征没有万能和精确的定义.特征的精确定义往往由问题或者应用类型决定.特征是一个数字图像中“有趣”的部分,它是许多计算机图像分析算法的起点.因此一个算法是否成功往往由它使用和定义的特征决定.因此特征提取最重要的一个特性是“可重复性”:同一场景的不同图像…
目标检测的图像特征提取之(一)HOG特征 zouxy09@qq.com http://blog.csdn.net/zouxy09 1.HOG特征: 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究…
部分 V图像特征提取与描述 OpenCV-Python 中文教程(搬运)目录 29 理解图像特征 目标本节我会试着帮你理解什么是图像特征,为什么图像特征很重要,为什么角点很重要等.29.1 解释 我相信你们大多数人都玩过拼图游戏吧.首先你们拿到一张图片的一堆碎片,要做的就是把这些碎片以正确的方式排列起来从而重建这幅图像.问题是,你怎样做到的呢?如果把你做游戏的原理写成计算机程序,那计算机就也会玩拼图游戏了.如果计算机可以玩拼图,我们就可以给计算机一大堆自然图片,然后就可以让计算机把它拼成一张大图…
1.HOG特征 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.它通过计算和统计图像局部区域的梯度方向直方图来构成特征.Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功.需要提醒的是,HOG+SVM进行行人检测的方法是法国研究人员Dalal在2005的CVPR上提出的,而如今虽然有很多行人检测算法不断提出,但基本都是以HOG+SVM的思路为主. (1)主要…