算法复习——背包dp】的更多相关文章

1.01背包 二维递推式子: 代码: ;i<=n;i++) ;x--) ][x-w[i]]+c[i],f[i-][x]); ][x]; printf("%d",f[n][m]); // f(n,m)为最优解 ; 然而有时候,由于容量或者物品数过多可能导致用二维数组可能超空间,此时可以考虑一维的优化 用f[i]表示当使用了i的容量后最多可以装多少价值的物品,我们可以推出以下代码: ;i<=n;i++) ;j--) if(w[i]<=j) f[j]=max(f[j],f[…
开头由于不知道讲啥依然搬讲义 对于引入的这个问题,讲义里已经很清楚了,我更喜欢用那个建树的理解···· 相当于先预处理f,然后从起点开始在树上走··记录目前已经找到了多少个满足题意的数k,如果枚举到第i位,下一位要走的是1,需要加上左子树的总数f[i-1][K-k],如果下一位走的是0直接走左子树即可···· #include<iostream> #include<cstdio> #include<cstdlib> #include<cmath> #incl…
感觉对区间dp也不好说些什么直接照搬讲义了2333 例题: 1.引水入城(洛谷1514) 这道题先开始看不出来到底和区间dp有什么卵关系···· 首先肯定是bfs暴力判一判可以覆盖到哪些城市····无解直接输出···有解得话就要想想了···· 这道题关键是要发现··如果一个蓄水池所在城市可以覆盖到一些沙漠城市···那么这些沙漠城市肯定是一段连续区间····不然假设有一个城市是断开的而两边都被同一个蓄水池流出的水覆盖,这个城市四周的城市都肯定比它矮···(不理解举个反例吧···反正我举不出来)··…
树形dp的状态转移分为两种,一种为从子节点到父节点,一种为父节点到子节点,下面主要讨论子节点到父亲节点的情况: 例题1(战略游戏): 这是一道典型的由子节点状态转移到父节点的问题,而且兄弟节点之间没有相互影响,我们用f[i][0]/f[i][1]表示i不取/要取时其所在子树总共最少取的节点数,不难得出dp方程: 代码: #include<iostream> #include<cstdio> #include<cstdlib> #include<cmath>…
题目 题目描述 杭州人称那些傻乎乎粘嗒嗒的人为 62(音:laoer). 杭州交通管理局经常会扩充一些的士车牌照,新近出来一个好消息,以后上牌照,不再含有不吉利的数字了,这样一来,就可以消除个别的士司机和乘客的心理障碍,更安全地服务大众. 不吉利的数字为所有含有 4 或 62 的号码.例如:62315 73418 88914 都属于不吉利号码.但是,61152 虽然含有 6 和 2,但不是 62 连号,所以不属于不吉利数字之列. 你的任务是,对于每次给出的一个牌照区间号,推断出交管局今次又要实际…
[题目]#6395. 「THUPC2018」城市地铁规划 / City [题意]给定n个点要求构造一棵树,每个点的价值是一个关于点度的k次多项式,系数均为给定的\(a_0,...a_k\),求最大价值.\(n \leq 3000,k \leq 10\). [算法]背包DP+Prufer序 首先每个点度x的价值g(x)可以暴力预处理.将每个点的度-1后,就不再有树形态这个限制了,只要n个点的度加起来是n-2即可,因为此时只要让所有还原后度不为1的点连通,度为1的叶子节点直接分配. 问题转化为n-2…
01背包 动态规划是一种高效的算法.在数学和计算机科学中,是一种将复杂问题的分成多个简单的小问题思想 ---- 分而治之.因此我们使用动态规划的时候,原问题必须是重叠的子问题.运用动态规划设计的算法比一般朴素算法高效很多,因为动态规划不会重复计算已经计算过的子问题.因为动态规划又可以称为“记忆化搜索”. 01背包是介绍动态规划最经典的例子,同时也是最简单的一个.我们先看看01背包的是什么? 问题(01背包): 有n个重量和价值分别为vi和ci的物品.从这些物品中挑出总重量不超过m的物品,求所有挑…
树形DP和状压DP和背包DP 树形\(DP\)和状压\(DP\)虽然在\(NOIp\)中考的不多,但是仍然是一个比较常用的算法,因此学好这两个\(DP\)也是很重要的.而背包\(DP\)虽然以前考的次数挺多的,但是现在基本上已经成了人人都能AK的题了,所以也不经常考了. 树形DP 树形DP这个非常特殊,他好像和是唯一一个用深搜实现的DP,所以我们学好它也是应该的,其特点是通过深搜. 思路 先找到一个根节点,然后预处理出所有子树的大小. 然后深搜把最底层的子节点得状态处理出来. 递归回溯到根节点,…
题目:http://acm.fzu.edu.cn/problem.php?pid=2214 (http://www.fjutacm.com/Problem.jsp?pid=2053) 这题看起来是一题普通背包题,但是你会发现相对价格来说,体积太大了,此时只要将体积看为价格,价格看为体积,然后再来一个普通的背包DP算法就好了: #include<stdio.h> #include<algorithm> using namespace std; struct N { int w, v;…
0/1背包 给出n个物品,每个物品有Vi的价值和Wi的费用,我们总共有m块钱,求最多能得到多少价值的物品. N<=10^3,m<=10^3 记录方案数?记录输出方案? 输出方案: 对每个dp[i][j]记录是由哪个状态转移过来的,然后从最后一直往前找,输出: 最优策略方案数:再定义一个数组f[i][j]=dp[i-1][j]>dp[i-1][j-w[i]]+v[i]?f[i-1][j]:f[i-1][j-w[i]]; if(dp[i-1][j]==dp[i-1][j-w[i]]+v[i]…