这是一个来自官网的示例:https://github.com/keras-team/keras/blob/master/examples/antirectifier.py 与之前的MINST手写数字识别全连接网络相比,只是本实例使用antirectifier替换ReLU激活函数. '''The example demonstrates how to write custom layers for Keras. # Keras自定义层编写示范 We build a custom activatio…
这是一个简单快速入门教程——用Keras搭建神经网络实现手写数字识别,它大部分基于Keras的源代码示例 minst_mlp.py. 1.安装依赖库 首先,你需要安装最近版本的Python,再加上一些包Keras,numpy,matplotlib和jupyter.你可以安装这些报在全局,但是我建议安装它们在virtualenv虚拟环境, 这基本上封装了一个完全孤立的Python环境. 安装Python包管理器 sudo easy_install pip 安装virtualenv pip inst…
今天我们的主角是keras,其简洁性和易用性简直出乎David 9我的预期.大家都知道keras是在TensorFlow上又包装了一层,向简洁易用的深度学习又迈出了坚实的一步. 所以,今天就来带大家写keras中的Hello World , 做一个手写数字识别的cnn.回顾cnn架构: 我们要处理的是这样的灰度像素图: 我们先来看跑完的结果(在Google Colab上运行): x_train shape: (60000, 28, 28, 1) 60000 train samples 10000…
主要内容: 1.基于多层感知器的mnist手写数字识别(代码注释) 2.该实现中的函数总结 平台: 1.windows 10 64位 2.Anaconda3-4.2.0-Windows-x86_64.exe (当时TF还不支持python3.6,又懒得在高版本的anaconda下配置多个Python环境,于是装了一个3-4.2.0(默认装python3.5),建议装anaconda3的最新版本,TF1.2.0版本已经支持python3.6!) 3.TensorFlow1.1.0 先贴代码: #…
  最近百度为了推广自家编写对深度学习框架PaddlePaddle不断推出各种比赛.百度声称PaddlePaddle是一个“易学.易用”的开源深度学习框架,然而网上的资料少之又少.虽然百度很用心地提供了许多文档,而且还是中英双语具备,但是最关键的是报错了很难在网上找到相应的解决办法.为了明年备战百度的比赛,便开始学习以下PaddlePaddle. 1.安装 PaddlePaddle同样支持CUDA加速运算,但是如果没有NVIDIA的显卡,那就还是装CPU版本. CPU版本安装:pip insta…
手写数字识别实现 设计技术参数:通过由数字构成的图像,自动实现几个不同数字的识别,设计识别方法,有较高的识别率 关键字:二值化  投影  矩阵  目标定位  Matlab 手写数字图像识别简介: 手写阿拉伯数字识别是图像内容识别中较为简单的一个应用领域,原因有被识别的模式数较少(只有0到9,10个阿拉伯数字).阿拉伯数字笔画少并且简单等.手写阿拉伯数字的识别采用的方法相对于人脸识别.汉字识别等应用领域来说可以采用更为灵活的方法,例如基于规则的方法.基于有限状态自动机的方法.基于统计的方法和基于神…
1. 知识点准备 在了解 CNN 网络神经之前有两个概念要理解,第一是二维图像上卷积的概念,第二是 pooling 的概念. a. 卷积 关于卷积的概念和细节可以参考这里,卷积运算有两个非常重要特性,以下面这个一维的卷积为例子: 第一个特性是稀疏连接.可以看到, layer m 上的每一个节点都只与 layer m-1 对应区域的三个节点相连接.这个局部范围也叫感受野.第二个特性是相同颜色的线条代表了相同的权重,即权重共享.这样做有什么好处呢?一方面权重共享可以极大减小参数的数目,学习起来更加有…
上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可以识别手写数字,我们要采用卷积神经网络CNN来进行别呢?CNN到底是怎么识别的?用CNN有哪些优势呢?我们下面就来简单分析一下.在讲CNN之前,为避免完全零基础的人看不懂后面的讲解,我们先简单回顾一下传统的神经网络的基本知识. 神经网络的预备知识      为什么要用神经网络? 特征提取的高效性.…
一.kNN算法是机器学习的入门算法,其中不涉及训练,主要思想是计算待测点和参照点的距离,选取距离较近的参照点的类别作为待测点的的类别. 1,距离可以是欧式距离,夹角余弦距离等等. 2,k值不能选择太大或太小,k值含义,是最后选取距离最近的前k个参照点的类标,统计次数最多的记为待测点类标. 二.关于kNN实现手写数字识别 1,手写数字训练集测试集的数据格式,本篇文章说明的是<机器学习实战>书提供的文件,将所有数字已经转化成32*32灰度矩阵. 三.代码结构构成 1,data_Prepare.py…
# 手写数字识别 ----卷积神经网络模型 import os import tensorflow as tf #部分注释来源于 # http://www.cnblogs.com/rgvb178/p/6052541.html from tensorflow.examples.tutorials.mnist import input_data data = input_data.read_data_sets("/tmp/data/", one_hot=True) '''获取程序集'''…