GPU CUDA之——深入理解threadIdx】的更多相关文章

http://blog.csdn.net/canhui_wang/article/details/51730264 摘要 本文主要讲述CUDA的threadIdx. 1. Grid,Block和Thread三者的关系 其中,一个grid包含多个blocks,这些blocks的组织方式可以是一维,二维或者三维.任何一个block包含有多个Threads,这些Threads的组织方式也可以是一维,二维或者三维.举例来讲:比如上图中,任何一个block中有10个Thread,那么,Block(0,0)…
最近用到这方面的知识,感觉这篇文章写的很好,为了方便自己查阅,就搬运了过来,如果牵涉到侵权,请联系我,我会删除该博文!!! 我们知道做深度学习离不开GPU,不过一直以来对GPU和CPU的差别,CUDA以及cuDNN都不是很了解,所以找了些资料整理下,希望不仅可以帮助自己理解,也能够帮助到其他人理解. 先来讲讲CPU和GPU的关系和差别吧.截图来自资料1(CUDA的官方文档): 从上图可以看出GPU(图像处理器,Graphics Processing Unit)和CPU(中央处理器,Central…
本文转载自:https://blog.csdn.net/u010801439/article/details/80483036 ubuntu 18.04 安装GPU +CUDA+cuDNN : 目前,大多情况下,能搜到的基本上都ubuntu 14.04.或者是ubuntu 16.04的操作系统安装以及GPU 环境搭建过程,博主就目前自身实验室环境进行分析,总结一下安装过程. 1.实验室硬件配置(就需要而言): gpu : GeForce titan xp   12G 显存 内存: 64G 硬盘…
前期写代码的时候都会困惑这个实际的threadIdx(tid,实际的线程id)到底是多少,自己写出来的对不对,今天经过自己一些小例子的推敲,以及找到官网的相关介绍,总算自己弄清楚了. 在启动kernel的时候,要通过指定gridsize和blocksize才行,举下面的例子说说: dim3 gridsize(2,2); dim3 blocksize(4,4); gridsize相当于是一个2*2的block,gridDim.x,gridDim.y,gridDim.z相当于这个dim3的x,y,z…
又是一枚祖国的骚年,阅览做做笔记:http://www.cnblogs.com/neopenx/p/4643705.html 这里只是一些基础知识.帮助理解DL tool的实现. 最新补充:我需要一台DIY的Deep learning workstation. “这也是深度学习带来的一个全新领域,它要求研究者不仅要理论强,建模强,程序设计能力也要过硬,不能纸上谈兵.” CUDA的广泛应用造就了GPU计算专用Tesla GPU的崛起. 随着显卡的发展,GPU越来越强大,而且GPU为显示图像做了优化…
首先,正确安装OpenCV,并且通过测试. 我理解GPU的环境配置由3个主要步骤构成. 1. 生成关联文件,即makefile或工程文件 2. 编译生成与使用硬件相关的库文件,包括动态.静态库文件. 3. 将生成的库文件加入到程序中,加入过程类似于OpenCV库的添加过程. 详细操作参见: http://wenku.baidu.com/link?url=GGDJLZFwhj26F50GqW-q1ZcWek-QN2kAgVJ5SHrQcmte-nx9-GyIUKxGwIvtzJ_WoBddvasI…
转自:http://luofl1992.is-programmer.com/posts/38830.html CUDA编程中,习惯称CPU为Host,GPU为Device.编程中最开始接触的东西恐怕是并行架构,诸如Grid.Block的区别会让人一头雾水,我所看的书上所讲述的内容比较抽象,对这些概念的内容没有细讲,于是在这里作一个整理. Grid.Block和Thread的关系 Thread  :并行运算的基本单位(轻量级的线程)Block   :由相互合作的一组线程组成.一个block中的th…
现在主要的并行计算设备有两种发展趋势: (1)多核CPU. 双核,四核,八核,...,72核,...,可以使用OpenMP编译处理方案,就是指导编译器编译为多核并行执行. (2)多线程设备(GP)GPU. 通用GPU,就是显卡,以nvidia公司的显卡为主.nvidia使用CUDA编程. 由于毕业的需要,现在开始学习CUDA编程.看了一段时间教程,目前环境已经配好,下面是一个简单的CUDA程序: 程序实现向量的加法操作,使用了一个block内部的512个线程. #include <stdio.h…
步骤简述: 1.安装GPU驱动(系统适配,不采取手动安装的方式) 2.安装依赖(cuda依赖库,caffe依赖) 3.安装cuda 4.安装cudnn(只是复制文件加链接,不需要编译安装的过程) 5.安装caffe 6.安装pycaffe 7.安装matcaffe  获取资源 cuda8.0 , cudnn ,caffe-master (暂未提供,网上下载) caffe-master:  git clone https://github.com/BVLC/caffe.git 1.安装GPU(系统…
数据传输测试,先从主机传输到设备,再在设备内传输,再从设备传输到主机. H-->D D-->D D-->H // moveArrays.cu // // demonstrates CUDA interface to data allocation on device (GPU) // and data movement between host (CPU) and device. #include <stdio.h> #include <assert.h> #in…