前言 机器学习栏目记录我在学习Machine Learning过程的一些心得笔记,涵盖线性回归.逻辑回归.Softmax回归.神经网络和SVM等等,主要学习资料来自Standford Andrew Ng老师在Coursera的教程,同时也参考了大量网上的相关资料(在后面列出). 本文主要记录我在学习神经网络过程中的心得笔记,共分为三个部分: Neural network - Representation:神经网络的模型描述: Neural network - Learning:神经网络的模型训练…
[机器学习] Coursera ML笔记 - 监督学习(Supervised Learning) - Representation http://blog.csdn.net/walilk/article/details/50922854…
引言 机器学习栏目记录我在学习Machine Learning过程的一些心得笔记,涵盖线性回归.逻辑回归.Softmax回归.神经网络和SVM等等.主要学习资料来自Standford Andrew Ng老师在Coursera的教程以及UFLDL Tutorial,Stanford CS231n等在线课程和Tutorial,同一时候也參考了大量网上的相关资料(在后面列出). 前言 本文主要介绍逻辑回归的基础知识.文章小节安排例如以下: 1)逻辑回归定义 2)如果函数(Hypothesis func…
正则化与过拟合(highvariance)和欠拟合(highbias)的关系-部分(五) ML的诊断方法-部分(六) 如何采取下一步-部分(七) 部分(五) 从图中可以看出,正则化项可以用来影响模型函数对数据是否过拟合,正则化项的本意是防止过拟合的,但是对于前面的lamuda的正确的选取却很重要,对于第一个坐标系来说,因为lamuda太大,导致正则化项很小,即在训练后会使得theta(1)~theta(n)都趋向于0,而只有一个参数theta(0),使得决策线(此处举例的是线,而非面)成为了一个…
线性回归的模型是:y=theta0*x+theta1   其中theta0,theta1是我们希望得到的系数和截距. 下面是代码实例: 1. 用自定义数据来看看格式: # -*- coding:utf-8 -*- from sklearn import linear_model from resys.SplitData import * from numpy import * import matplotlib.pyplot as plt ## 注意: ## python线性回归的数据输入格式…
常见的远程登录协议 1.RDP(remote desktopp protocol)协议,windows远程桌面协议 2.telnet CLI 界面下远程管理,几乎所有的操作系统都有,数据明文传输,不安全 3.SSH (secure shell) CLI 界面下远程原理,几乎所有操作系统支持,加密传输 4.RFB(remote framebuffer) ,图形化远程原理协议,VNC(virtual Network computing)使用的协议,主要作为类UNIX系统下主要的图形化远程管理方式 s…
引入额外标记 xj(i) 第i个训练样本的第j个特征 x(i) 第i个训练样本对应的列向量(column vector) m 训练样本的数量 n 样本特征的数量 假设函数(hypothesis function) 公式: 向量化: 其中:令x0=1,x0引入的目的是为了"美化",以便于矩阵计算 使用矩阵计算: 令X存储训练样本,形如: 我们就可以这样计算假设:…
译者按: AI时代,不会机器学习的JavaScript开发者不是好的前端工程师. 原文: Machine Learning with JavaScript : Part 1 译者: Fundebug 为了保证可读性,本文采用意译而非直译.另外,本文版权归原作者所有,翻译仅用于学习 使用JavaScript做机器学习?不是应该用Python吗?是不是我疯了才用JavaScript做如此繁重的计算?难道我不用Python和R是为了装逼?scikit-learn(Python机器学习库)不能使用Pyt…
本博资料来自andrew ng的13年的ML视频中10_X._Advice_for_Applying_Machine_Learning. 遇到问题-部分(一) 错误统计-部分(二) 正确的选取数据集-部分(三) 辨识是欠拟合还是过拟合-部分(四) 正则化与过拟合(high variance)和欠拟合(high bias)的关系-部分(五) 部分(六).部分(七)见“如何应用ML的建议-下” 部分(一):   举个例子,当我们采用这样的模型(看过ng在网易上视频的人对预测房子价格的例子并不陌生),…
PS:这是6月份时的一个结课项目,当时的想法就是把之前在Coursera ML课上实现过的对手写数字识别的方法迁移过来,但是最后的效果不太好… 2014年 6 月 一.实验概述 实验采用的是CIFAR-10 图像数据库,一共包括60000幅32x32 彩色图像.这些图像分为10类,每类6000幅.整个数据库分为五个训练包和一个测试包,每个包一万幅图像,所以一共5万幅训练图像,1万幅测试图像.    测试包中,每个类包括1000幅图像,随机排序.而5个训练包合在一起,每类包括5000幅图像.类的标…