【BZOJ 1857】【SCOI 2010】传送带】的更多相关文章

Description 题库链接 在一个 \(2\) 维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段 \(AB\) 和线段 \(CD\) .在 \(AB\) 上的移动速度为 \(P\) ,在 \(CD\) 上的移动速度为 \(Q\) ,在平面上的移动速度 \(R\) .现在从 \(A\) 点走到 \(D\) 点,他想知道最少需要走多长时间. \(1\leq A_x,A_y,B_x,B_y,C_x,C_y,D_x,D_y\leq 1000,1\leq P,Q,R\leq…
Link: BZOJ 1857 传送门 Solution: 首先中间的两个拐点$C,D$肯定都在传送带$A,B$上 接下来感性发现固定点A/C,另一个点C/D时间随位置的变化为单峰函数 这样就是三分套三分了 严谨的证明还不会啊…… 目前好像只能推出仅有一个零点,不过不太会证单调性啊…… Code: #include <bits/stdc++.h> using namespace std; #define X first #define Y second typedef long long ll…
二次联通门 : BZOJ 1857: [Scoi2010]传送带 /* BZOJ 1857: [Scoi2010]传送带 三分套三分 可能是吧..dalao们都说明显是一个单峰函数 可是我证不出来.. 三分第一个线段,和第二个线段 */ #include <cstdio> #include <iostream> #include <cmath> #include <cstdlib> #define EPS 1e-3 int Ax, Ay, Bx, By, C…
[BZOJ 2006] [NOI 2010]超级钢琴(贪心+ST表+堆) 题面 给出一个长度为n的序列,选k段长度在L到R之间的区间,一个区间的值等于区间内所有元素之的和,使得k个区间的值之和最大.区间可以相交或包含,但一个区间只能被选1次. \(n,k,L,R \leq 5 \times 10^5\) 分析 先把区间和转化成前缀和.枚举左端点\(i\),右端点的范围为\([i+L-1,\min(i+R-1,n)]\).在这个区间里面找一个前缀和最大的位置p,答案就是\(sum[p]-sum[i…
SCOI 2010 连续攻击游戏 solution 直接就硬刚 我愿称贪心为暴力 因为题目中要求一定从小到大贪心,那么当前点的下标有能够选取的较大点,那么它一定可以和前面的一个较小点连接,所以可以直接选取这个点 若你选的当前点是较小点,那么就需要考虑后面的怎么往上接才能使得答案最优.感性理解一下,答案应该在较大点密集的地方,然后往后找到较大点等于后面的较小点,然后就像当于接住了(就那个感觉,能明白吗),连起来之后形成的最长的链的长度就是最优的答案了 为了避免爆掉数组,我们采用的vector,自动…
三分套三分,虽然简单,但是也得掌握,,, 时间复杂度$O(log_{1.5}^2 n)$ 一开始WA好几次发现是快速读入里没有return,这样也能过样例?_(:3J∠)_ #include<cmath> #include<cstdio> #include<cstring> #include<algorithm> using namespace std; const double eps = 1e-3; int in() { int k = 0, fh =…
题目链接 1857: [Scoi2010]传送带 Time Limit: 1 Sec  Memory Limit: 64 MBSubmit: 934  Solved: 501[Submit][Status][Discuss] Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R.现在lxhgww想从A点走到D点,他想知道最少需要走多长时间 Inpu…
1857: [Scoi2010]传送带 Time Limit: 1 Sec Memory Limit: 64 MB Description 在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R.现在lxhgww想从A点走到D点,他想知道最少需要走多长时间 Input 输入数据第一行是4个整数,表示A和B的坐标,分别为Ax,Ay,Bx,By 第二行是4个整数,表示C和D的坐…
在一个2维平面上有两条传送带,每一条传送带可以看成是一条线段.两条传送带分别为线段AB和线段CD.lxhgww在AB上的移动速度为P,在CD上的移动速度为Q,在平面上的移动速度R.现在lxhgww想从A点走到D点,他想知道最少需要走多长时间 Input输入数据第一行是4个整数,表示A和B的坐标,分别为Ax,Ay,Bx,By 第二行是4个整数,表示C和D的坐标,分别为Cx,Cy,Dx,Dy 第三行是3个整数,分别是P,Q,ROutput输出数据为一行,表示lxhgww从A点走到D点的最短时间,保留…
为了方便,我们不妨设$\rm P \lt Q,R$ 我们发现,有$\rm E$点在$\rm AB$上,$\rm F$点在$\rm CD$上,最优解一定是$\rm AE\rightarrow EF\rightarrow FD$,因为若中途离开某个传送带再回来,显然是不优的. 考虑固定点$E$,观察点$F$对答案造成的影响. 作过点$\rm E$作$\rm EG \perp CD$. 若$\rm F$在$\rm CG$上,单调性很显然. 若$\rm F$在$\rm GD$上,朝$\rm D$移动时.…