lsm-tree】的更多相关文章

LSM Tree(Log Structured Merge Trees)数据组织方式被应用于多种数据库,如LevelDB.HBase.Cassandra等,下面我们从为什么使用LSM tree.LSM tree的实现思路两方面介绍这种存储组织结构,完成对LSM tree的初步了解. 存储背景回顾 LSM tree相较B+树或其他索引存储实现方式,提供了更好的写性能.究其原因,我们先回顾磁盘相关的一点背景知识. 顺序操作磁盘的性能,较随机读写磁盘的性能高很多,我们实现数据库时,也是围绕磁盘的这点特…
引言 众所周知传统磁盘I/O是比较耗性能的,优化系统性能往往需要和磁盘I/O打交道,而磁盘I/O产生的时延主要由下面3个因素决定: 寻道时间(将磁盘臂移动到适当的柱面上所需要的时间,寻道时移动到相邻柱面移动所需时间1ms,而随机移动所需时间位5~10ms) 旋转时间(等待适当的扇区旋转到磁头下所需要的时间) 实际数据传输时间(低端硬盘的传输速率为5MB/ms,而高速硬盘的速率是10MB/ms) 近20年平均寻道时间改进了7倍,传输速率改进了1300倍,而容量的改进则高达50000倍,这一格局主要…
The Sorted String Table (SSTable) is one of the most popular outputs for storing, processing, and exchanging datasets. An SSTable is a simple abstraction to efficiently store large numbers of key-value pairs while optimizing for high throughput, sequ…
最近发现很多数据库都使用了 LSM Tree 的存储模型,包括 LevelDB,HBase,Google BigTable,Cassandra,InfluxDB 等.之前还没有留意这么设计的原因,最近调研时间序列数据库的时候才发现这样设计的优势所在,所以重新又复习了一遍 LSM Tree 的原理. 特点 总的来说就是通过将大量的随机写转换为顺序写,从而极大地提升了数据写入的性能,虽然与此同时牺牲了部分读的性能. 只适合存储 key 值有序且写入大于读取的数据,或者读取操作通常是 key 值连续的…
一种树,适合于写多读少的场景.主要是利用了延迟更新.批量写.顺序写磁盘(磁盘sequence access比random access快). 背景 回顾数据存储的两个“极端”发展方向 加快读:加索引(B+树.二分查找树等) 目的是为了尽快查到目标数据,从而提高查询速度:但由于写入数据时同时要维护索引,故写效率较低. 加快写:纯日志型,不加索引,数据以append方式追加写入 append利用了“磁盘顺序写比任意写性能高”的特性,使得写入速度非常高(接近磁盘理论写入速度):因缺乏索引支持故需要扫描…
Coming from http://blog.sina.com.cn/s/blog_693f08470101njc7.html 今天来聊聊lsm tree,它的全称是log structured merge tree ,简单来说,lsm tree可以认为是针对传统b树在磁盘写入上低劣表现的一种优化,其核心思想的核心就是放弃部分读能力,换取写入的最大化能力.所以你可以看到几乎所有的nosql都在跟b树拼写入速度和延迟.这是为什么呢? 看了今天的文章大家就应该能够有个比较清晰的认识了:)   要了…
目录 设计思路 何为 LSM-Treee 参考资料 整体结构 内存表 WAL SSTable 的结构 SSTable 元素和索引的结构 SSTable Tree 内存中的 SSTable 数据查找过程 实现过程 Key/Value 的表示 内存表的实现 二叉排序树结构定义 插入操作 查找 删除 遍历算法 WAL WAL 文件恢复过程 SSTable 与 SSTable Tree SSTable 结构 SSTable 文件结构 SSTable Tree 结构和管理 SSTable 文件 插入 SS…
The New InfluxDB Storage Engine: Time Structured Merge Tree by Paul Dix | Oct 7, 2015 | InfluxDB | 0 comments For more than a year we’ve been talking about potentially making a storage engine purpose-built for our use case of time series data. Today…
13.2.4 事务机制 NoSQL系统通常注重性能和扩展性,而非事务机制. 传统的SQL数据库的事务通常都是支持ACID的强事务机制.要保证数据的一致性,通常多个事务是不可能交叉执行的,这样就导致了可能一个很简单的操作需要等等一个复杂操作完成才能进行的情况. 对很多NoSQL系统来说,对性能的考虑远在ACID的保证之上.通常NoSQL系统仅提供行级别的原子性保证,也就是说同时对同一个Key下的数据进行的两个操作,在实际执行的时候是会串行的执行,保证了每一个Key-Value对不会被破坏.对绝大多…
讲LSM树之前,需要提下三种基本的存储引擎,这样才能清楚LSM树的由来: 哈希存储引擎  是哈希表的持久化实现,支持增.删.改以及随机读取操作,但不支持顺序扫描,对应的存储系统为key-value存储系统.对于key-value的插入以及查询,哈希表的复杂度都是O(1),明显比树的操作O(n)快,如果不需要有序的遍历数据,哈希表就是your Mr.Right B树存储引擎是B树(关于B树的由来,数据结构以及应用场景可以看之前一篇博文)的持久化实现,不仅支持单条记录的增.删.读.改操作,还支持顺序…