从宏观方面,机器学习可以从不同角度来分类 是否在人类的干预/监督下训练.(supervised,unsupervised,semisupervised 以及 Reinforcement Learning) 是否可以增量学习 (在线学习,批量学习) 是否是用新数据和已知数据比较,还是在训练数据中发现一些规律build出一个预测模型(instance-based ,model-based learning). 以上分类并非互相排斥.这一节我们介绍监督/无监督学习. Supervised/Unsupe…
1.有监督学习和无监督学习的区别: 1.1概述: 有监督学习是知道变量值(数据集)和结果(已知结果/函数值),但是不知道函数样式(函数表达式)的情况下通过machine learning(ML)获得正确的函数表达式(算法).也即 需要部分数据集已经有正确答案,才可以推算出正确的函数表达式.比如给定房价数据集, 对于里面每个数据,算法都知道对应的正确房价, 即这房子实际卖出的价格.机器学习通过一定的分析,找到数据集与结果集之间存在的关系(算法).找到正确的算法之后,你就可以应用该算法来计算出更多的…
转载 http://daniellaah.github.io/2016/Machine-Learning-Andrew-Ng-My-Notes-Week-1-Introduction.html 一. 监督学习 什么是监督学习? 我们来看看维基百科中给出的定义: 监督式学习(英语:Supervised learning),是一个机器学习中的方法,可以由训练资料中学到或建立一个模式(函数 / learning model),并依此模式推测新的实例.训练资料是由输入物件(通常是向量)和预期输出所组成.…
深度学习 (DeepLearning) 基础 [1]---监督学习与无监督学习 Introduce 学习了Pytorch基础之后,在利用Pytorch搭建各种神经网络模型解决问题之前,我们需要了解深度学习的一些基础知识.本文主要介绍监督学习和无监督学习. 以下均为个人学习笔记,若有错误望指出. 监督学习和无监督学习 常见的机器学习方法的类型如下: 监督学习:用已知标签的训练样本训练模型,用来预测未来输入样本的标签,如用于逻辑回归分类器. 无监督学习:不需要有已知标签的训练样本,而是直接对数据建模…
概述 在机器学习领域,主要有三类不同的学习方法: 监督学习(Supervised learning) 非监督学习(Unsupervised learning) 半监督学习(Semi-supervised learning) 定义 监督学习:通过已有的一部分输入数据与输出数据之间的对应关系,生成一个函数,将输入映射到合适的输出,例如分类. 非监督学习:直接对输入数据集进行建模,例如聚类. 半监督学习:综合利用有类标的数据和没有类标的数据,来生成合适的分类函数. 区别 是否有监督(supervise…
监督学习 就是人们常说的分类,通过已有的训练样本(即已知数据以及其对应的输出)去训练得到一个最优模型(这个模型属于某个函数的集合,最优则表示在某个评价准则下是最佳的),再利用这个模型将所有的输入映射为相应的输出,对输出进行简单的判断从而实现分类的目的,也就具有了对未知数据进行分类的能力. 举个简单的例子,小时候老师教我们看图识物,图片是输入,老师的判断是输出,我们通过跟读.写来训练自己,久而久之大脑中会形成一些泛化得模型,以后遇到实物时不需要老师的提醒就可以知道这是什么类型的. 比较经典的监督学…
why写这篇blog 最近在接触这方面的知识,但是找了许多的笔记,都感觉没有很好的总结出来,也正好当做是边学习,边复习着走.大佬轻喷.参考书目<python机器学习基础教程> 将分别从以下3方面进行总结 1.算法的作用 2.引用的方式(我这里主要是基于scikit-learn) 3.重要参数 4.优缺点 5.注意事项 监督学习算法 监督学习主要解决两种问题:回归与分类. 统一a为回归,b为分类. (既然是总结,那概念就不过多赘述) 有需要了解的概念,可以上这个网站AI知识库 直接上算法 K近邻…
前面,我们提到了监督学习,在机器学习中,与之对应的是非监督学习.无监督学习的问题是,在未加标签的数据中,试图找到隐藏的结构.因为提供给学习者的实例是未标记的,因此没有错误或报酬信号来评估潜在的解决方案.这区别于监督学习和强化学习无监督学习. 无监督学习是密切相关的统计数据密度估计的问题.然而无监督学习还包括寻求,总结和解释数据的主要特点等诸多技术.在无监督学习使用的许多方法是基于用于处理数据的数据挖掘方法. 我们来看两张图片:                           从图中我们可以看…
1.强化学习 @ 目录 1.强化学习 1.1 强化学习原理 1.2 强化学习与监督学习 2.无监督学习 3.半监督学习 4.对抗学习 强化学习(英语:Reinforcement Learning,简称RL)是机器学习中的一个领域,是除了监督学习和非监督学习之外的第三种基本的机器学习方法. 强调如何基于环境而行动,以取得最大化的预期利益[1]. 与监督学习不同的是,强化学习不需要带标签的输入输出对,同时也无需对非最优解的精确地纠正. 1.1 强化学习原理 强化学习是从动物学习.参数扰动自适应控制等…
如果要对硬币进行分类,我们对硬币根据不同的尺寸重量来告诉机器它是多少面值的硬币 这种对应的机器学习即使监督学习,那么如果我们不告诉机器这是多少面额的硬币,只有尺寸和重量,这时候让机器进行分类,希望机器对不同种类的硬币分类,这种机器学习方式就是无监督学习.可以从下图看出,监督学习,根据颜色(面值)可以得出不同种类,而无监督学习也可根据所样例在的不同区域对样例进行分类. 根据聚类分组clustering: {xn} -> cluster(x) 根据密度分组density estimation{Xn}…
Python Scikit-learn *一组简单有效的工具集 *依赖Python的NumPy,SciPy和matplotlib库 *开源 可复用 sklearn库的安装 DOS窗口中输入 pip install ** NumPy(开源科学计算库),SciPy(集成多种数学算法和函数模块)和matplotlib(提供大量绘图工具)库基础上开发的,因此需要先装这些依赖库 安装顺序 SKlearn库中的标准数据集及基本功能 波士顿房价数据集 使用sklearn.datasets.load_bosto…
前面对半监督学习部分作了简单的介绍,这里开始了解有关无监督学习的部分,无监督学习内容稍微较多,本节主要介绍无监督学习中的PCA降维的基本原理和实现. PCA 0.无监督学习简介 相较于有监督学习和半监督学习,无监督学习就是从没有标签的数据中进行知识发现的过程. 更具体地说,无监督学习可以分成两个方面,一:称之为化繁为简,二称之为无中生有. 所谓化繁为简,就是将比较复杂的数据进行"简单化",此时将数据作为输入,输出则是从数据中所发现更为"简单"的内容,如下图所示: 图…
前言 Alpha Go在16年以4:1的战绩打败了李世石,17年又以3:0的战绩战胜了中国围棋天才柯洁,这真是科技界振奋人心的进步.伴随着媒体的大量宣传,此事变成了妇孺皆知的大事件.大家又开始激烈的讨论机器人什么时候会取代人类统治世界的问题. 其实人工智能在上世纪5.60年代就开始进入了理论研究阶段,人们在不断探索人工智能技术的同时,也担忧起机器人会不会替代人类.然而现实比理想残酷的多,由于当时各种条件的限制(理论基础.技术基础.数据基础.硬件性能等),人工智能相关的项目进度缓慢,也缺少实际成效…
本章通过一个例子,介绍机器学习的整个流程. 2.1 使用真实数据集练手(Working with Real Data) 国外一些获取数据的网站: Popular open data repositories: UC Irvine Machine Learning Repository Kaggle datasets Amazon's AWS datasets Meta portals (they list open data repositories): http://dataportals.o…
机器学习 - 维基百科,自由的百科全书 https://zh.wikipedia.org/wiki/%E6%9C%BA%E5%99%A8%E5%AD%A6%E4%B9%A0 机器学习是人工智能的一个分支.人工智能的研究历史有着一条从以“推理”为重点,到以“知识”为重点,再到以“学习”为重点的自然.清晰的脉络.显然,机器学习是实现人工智能的一个途径,即以机器学习为手段解决人工智能中的问题.机器学习在近30多年已发展为一门多领域交叉学科,涉及概率论.统计学.逼近论.凸分析.计算复杂性理论等多门学科.…
前言 由于实验原因,准备入坑 python 机器学习,而 python 机器学习常用的包就是 scikit-learn ,准备先了解一下这个工具.在这里搜了有 scikit-learn 关键字的书,找到了3本:<Learning scikit-learn: Machine Learning in Python><Mastering Machine Learning With scikit-learn><scikit-learn Cookbook>,第一本是2013年出版…
What is Machine Learning 定义 Arthur Samuel:Field of study that gives computers the ability to learn without being explicitly programmed(在没有被明确编程的情况下,赋予计算机学习能力的学习领域). Tom Mitchell:A computer program is said to learn from experience E with respect to so…
---恢复内容开始--- 所下内容都是对吴恩达教授的机器学习所做的笔记 下面是Arthur Samue对机器学习的定义 在没有明确设置的情况下,是计算机具有学习能力的研究领域. 这是一个比较陈旧一点的定义. 下面是Tom Mitchell的定义 计算机程序从经验(E)中学习,解决某一任务(T)进行某一性能度量(P),通过P测定在T上的表现因经验E而提高. 主要两种学习算法:1.监督学习 2. 无监督学习 简单来说监督学习就是我们会教计算机做某件事,然而在无监督学习中,是我们让计算机自己学习.  …
原文链接:https://riboseyim.github.io/2018/02/10/Machine-Learning-Algorithms/ 摘要 机器学习算法分类:监督学习.半监督学习.无监督学习.强化学习 基本的机器学习算法:线性回归.支持向量机(SVM).最近邻居(KNN).逻辑回归.决策树.k平均.随机森林.朴素贝叶斯.降维.梯度增强 目录 监督学习(Supervised learning) 机器学习算法分类 机器学习算法大致可以分为: 监督学习 | Supervised learn…
机器学习的定义 A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E. 某类任务T(task)具有性能度量P(performance),计算机程序可以从任务T…
将机器学习用到SDN中的综述:研究的问题和挑战 从流量分类.路由优化.服务质量(Qos)/体验质量(QoE)预测.资源管理和安全性的角度,回顾了机器学习算法如何应用于SDN领域. 相关知识 在SDN中应用机器学习是合适的原因: 图形处理单元GPU和张量处理单元TPU等技术为机器学习提供了很好的机会: 集中式SDN控制器具有全局网络视图,能够收集各种网络数据,便于机器学习算法的应用. 基于实时和历史网络数据,机器学习技术可以通过执行数据分析,网络优化和网络服务的自动提供来为SDN控制器提供智能化.…
从前几天起我就开始了愉快的机器学习,这里记录一下学习笔记,我看的是吴恩达老师的视频,这篇博客将会按吴老师的教学目录来集合各优良文章,以及部分的我的个人总结 1.  监督学习与无监督学习 监督:给定一个算法,需要部分数据集有正确的答案 分类和回归:给定一个样本特征 , 我们希望预测其对应的属性值 , 如果  是离散的, 那么这就是一个分类问题,反之,如果  是连续的实数, 这就是一个回归问题.   无监督学习: 聚类算法:给定一组样本特征 , 我们没有对应的属性值 , 而是想发掘这组样本在维空间的…
数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)的区别是什么? 数据科学(data science)和商业分析(business analytics)之间有什么关系? 本来我以为不需要解释这个问题的,到底数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)有什么区别,但是前几天因为有个学弟问我,我想了想发现我竟然也回答不出来,我在知乎和博客上查了查这个问题,发现还没有人写过比较详细和有说服力的对比…
本来我以为不需要解释这个问题的,到底数据挖掘(data mining),机器学习(machine learning),和人工智能(AI)有什么区别,但是前几天因为有个学弟问我,我想了想发现我竟然也回答不出来,我在知乎和博客上查了查这个问题,发现还没有人写过比较详细和有说服力的对比和解释.那我根据以前读的书和论文,还有和与导师之间的交流,尝试着说一说这几者的区别吧,毕竟一个好的定义在未来的学习和交流中能够发挥很大的作用.同时补上数据科学和商业分析之间的关系.能力有限,如有疏漏,请包涵和指正. 导论…
1    Unsupervised Learning 1.1    k-means clustering algorithm 1.1.1    算法思想 1.1.2    k-means的不足之处 1.1.3    如何选择K值 1.1.4    Spark MLlib 实现 k-means 算法 1.2    Mixture of Gaussians and the EM algorithm 1.3    The EM Algorithm 1.4    Principal Components…
Supervised Learning Unsupervised Learning Reinforced Learning Goal: How to apply these methods How to evaluate each methods What is Machine Learning? 1.computational statistics 2.computational artifacts(人工制品) that learn over time based on experience…
Unsupervised learning allows us to approach problems with little or no idea what our results should look like. We can derive structure from data where we don't necessarily know the effect of the variables. We can derive this structure by clustering t…
无监督学习(Unsupervised Learning) 聚类无监督学习 特点 只给出了样本, 但是没有提供标签 通过无监督学习算法给出的样本分成几个族(cluster), 分出来的类别不是我们自己规定的, 而是无监督学习算法自己计算出来的 K-means 聚类算法 规定 \(c^{(i)}\): 表示\(x^{(i)}\)属于哪个cluster, 如\(x^{(1)}\)属于\(c^{(1)}\)簇, 如果\(c^{(1)}=1\), 则\(x^{(1)}\)划分在第1个类别 \(\mu_k\…
无监督学习定义: [无监督学习]中没有任何的标签或者是有相同的标签或者就是没标签.所以我们已知数据集,却不知如何处理,也未告知每个数据点是什么.别的都不知道,就是一个数据集.你能从数据中找到某种结构吗? 针对数据集,无监督学习就能判断出数据有两个不同的聚集簇.这是一个类,那是另一个类,二者不同.是的,无监督学习算法可能会把这些数据分成两个不同的簇.所以叫做[聚类算法clustering algorithm] 聚类只是无监督学习的一种 聚类应用: 谷歌新闻:把不同新闻分成不同类别 基因分类:输入一…
by 南大周志华 摘要 监督学习技术通过学习大量训练数据来构建预测模型,其中每个训练样本都有其对应的真值输出.尽管现有的技术已经取得了巨大的成功,但值得注意的是,由于数据标注过程的高成本,很多任务很难获得如全部真值标签这样的强监督信息.因此,能够使用弱监督的机器学习技术是可取的.本文综述了弱监督学习的一些研究进展,主要关注三种弱监督类型:不完全监督,即只有一部分样本有标签:不确切监督,即训练样本只有粗粒度的标签:以及不准确监督,即给定的标签不一定总是真值. 关键词:机器学习,弱监督学习,监督学习…