使用Spark进行ALS编程的例子可以看:http://www.cnblogs.com/charlesblc/p/6165201.html ALS:alternating least squares 关于协同过滤ALS原理的可以看这篇文章:http://www.docin.com/p-938897760.html 最后的惩罚因子那部分没看懂.前面的还挺好的. 上面3.1节关于矩阵分解模型的自然意义和解释,讲的非常好! 注:矩阵的每一行代表一个方程,m行代表m个线性联立方程. n列代表n个变量.如…
http://antkillerfarm.github.io/ 向量的范数(续) 范数可用符号∥x∥λ表示. 经常使用的有: ∥x∥1=|x1|+⋯+|xn| ∥x∥2=x21+⋯+x2n−−−−−−−−−−−√ ∥x∥∞=max(|x1|,-,|xn|) 这里不做解释的给出例如以下示意图: 当中,0范数表示向量中非0元素的个数. 上图中的图形被称为lp ball. 表征在同一范数条件下,具有相同距离的点的集合. 范数满足例如以下不等式: ∥A+B∥≤∥A∥+∥B∥(三角不等式) 向量范数推广可…
一.Mahout推荐算法简介 Mahout算法框架自带的推荐器有下面这些: l  GenericUserBasedRecommender:基于用户的推荐器,用户数量少时速度快: l  GenericItemBasedRecommender:基于商品推荐器,商品数量少时速度快,尤其当外部提供了商品相似度数据后效率更好: l  SlopeOneRecommender:基于slope-one算法的推荐器,在线推荐或更新较快,需要事先大量预处理运算,物品数量少时较好: l  SVDRecommender…
推荐系统的算法,在上个世纪90年代成型,最早应用于UserCF,基于用户的协同过滤算法,标志着推荐系统的形成.首先,要明白以下几个理论:①长尾理论②评判推荐系统的指标.之所以需要推荐系统,是要挖掘冷门物品,增加利润,这是根本目的.一般的,评判一个推荐系统的好坏,需要以下几个指标: 推荐系统评测指标—准确率(Precision).召回率(Recall).F值(F-Measure) 下面简单列举几种常用的推荐系统评测指标: 1.准确率与召回率(Precision & Recall) 准确率和召回率是…
参考资料 [1]<Spark MLlib 机器学习实践> [2]http://blog.csdn.net/u011239443/article/details/51752904 [3]线性代数-同济大学 [4]基于矩阵分解的协同过滤算法 https://wenku.baidu.com/view/617482a8f8c75fbfc77db2aa.html [5]机器学习的正则化 http://www.cnblogs.com/jianxinzhou/p/4083921.html [6]正则化方法…
https://blog.csdn.net/qq_23269761/article/details/81355383 1.协同过滤(CF)[基于内存的协同过滤] 优点:简单,可解释 缺点:在稀疏情况下无法工作 所以对于使用userCF的系统,需要解决用户冷启动问题 和如何让一个新物品被第一个用户发现 对于只用itemCF的系统,需要解决物品冷启动问题 如何更新推荐系统呢,答案就是离线更新用户相似度矩阵和物品相似度矩阵[不断删除离开的用户/物品,加入新来的用户/物品] 2.MF PMF BPMF[…
数据规整 首先将评分数据从 ratings.dat 中读出到一个 DataFrame 里: >>> import pandas as pd In [2]: import pandas as pd In [3]: df = pd.read_csv('2014-12-18.csv') In [4]: df.head()Out[4]: user_id item_id behavior_type user_geohash item_category hour0 100268421 2840198…
ALS矩阵分解 一个 的打分矩阵 A 可以用两个小矩阵和的乘积来近似,描述一个人的喜好经常是在一个抽象的低维空间上进行的,并不需要把其喜欢的事物一一列出.再抽象一些,把人们的喜好和电影的特征都投到这个低维空间,一个人的喜好映射到了一个低维向量,一个电影的特征变成了纬度相同的向量,那么这个人和这个电影的相似度就可以表述成这两个向量之间的内积.我们把打分理解成相似度,那么“打分矩阵A(m*n)”就可以由“用户喜好特征矩阵U(m*k)”和“产品特征矩阵V(n*k)”的乘积.矩阵分解过程中所用的优化方法…
[论文标题]Factorization Meets the Neighborhood: a Multifaceted Collaborative Filtering Model   (35th-ICML,PMLR) [论文作者]Yehuda Koren [论文链接]Paper (9-pages // Double column) [摘要] 推荐系统为用户提供个性化的产品或服务建议.这些系统通常依赖于协同过滤(CF),通过分析过去的事务来建立用户和产品之间的关联.比较成功的CF方法有两种,一种是直…
[论文标题]Sparse Probabilistic Matrix Factorization by Laplace Distribution for Collaborative Filtering     (24th-IJCAI ) (Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI 2015) ) [论文作者]Liping Jing, PengWa…