我们暂且不考虑写磁盘的具体过程,先大致看看下面的图,这代表了 Kafka 的核心架构原理. Kafka 分布式存储架构 那么现在问题来了,如果每天产生几十 TB 的数据,难道都写一台机器的磁盘上吗?这明显是不靠谱的啊!所以说,这里就得考虑数据的分布式存储了,我们结合 Kafka 的具体情况来说说.在 Kafka 里面,有一个核心的概念叫做"Topic",这个 Topic 你就姑且认为是一个数据集合吧.举个例子,如果你现在有一份网站的用户行为数据要写入 Kafka,你可以搞一个 Topi…
Kafka作为当下流行的高并发消息中间件,大量用于数据采集,实时处理等场景,我们在享受他的高并发,高可靠时,还是不得不面对可能存在的问题,最常见的就是丢包,重发问题. 1.丢包问题:消息推送服务,每天早上,手机上各终端都会给用户推送消息,这时候流量剧增,可能会出现kafka发送数据过快,导致服务器网卡爆满,或者磁盘处于繁忙状态,可能会出现丢包现象. 解决方案:首先对kafka进行限速, 其次启用重试机制,重试间隔时间设置长一些,最后Kafka设置acks=all,即需要相应的所有处于ISR的分区…
1.幂等性 幂等(idempotent.idempotence)是一个数学与计算机学概念,常见于抽象代数中. 在编程中一个幂等操作的特点是其任意多次执行所产生的影响均与一次执行的影响相同.幂等函数,或幂等方法,是指可以使用相同参数重复执行,并能获得相同结果的函数.这些函数不会影响系统状态,也不用担心重复执行会对系统造成改变.例如,"setTrue()"函数就是一个幂等函数,无论多次执行,其结果都是一样的.更复杂的操作幂等保证是利用唯一交易号(流水号)实现. 简单来说,幂等性就是一个数据…
前言 在之前的MQ专题中,我们已经解决了消息中间件的一大难题,消息丢失问题. 但MQ在实际应用中不是说保证消息不丢失就万无一失了,它还有两个令人头疼的问题:重复消费和乱序. 今天我们就来聊一聊这两个常见的问题,看看RocketMQ是如何解决这两个问题的. 为什么会重复消费 首先我们来聊一聊重复消费的问题,要解决一个问题最开始的一步当然是去查找问题发生的原因了. 那出现重复消费的原因到底是什么呢? 我们先来思考一下生产者发送消息这一过程中是不是有可能重复发送消息到MQ呢? 答案是肯定的,比如生产者…
一.kafka自带的消费机制 kafka有个offset的概念,当每个消息被写进去后,都有一个offset,代表他的序号,然后consumer消费该数据之后,隔一段时间,会把自己消费过的消息的offset提交一下,代表我已经消费过了.下次我要是重启,就会继续从上次消费到的offset来继续消费. 但是当我们直接kill进程了,再重启.这会导致consumer有些消息处理了,但是没来得及提交offset.等重启之后,少数消息就会再次消费一次. 其他MQ也会有这种重复消费的问题,那么针对这种问题,我…
一.如何保证百万级写入速度: 目录 1.页缓存技术 + 磁盘顺序写 2.零拷贝技术 3.最后的总结 “这篇文章来聊一下Kafka的一些架构设计原理,这也是互联网公司面试时非常高频的技术考点. Kafka是高吞吐低延迟的高并发.高性能的消息中间件,在大数据领域有极为广泛的运用.配置良好的Kafka集群甚至可以做到每秒几十万.上百万的超高并发写入. 那么Kafka到底是如何做到这么高的吞吐量和性能的呢?这篇文章我们来一点一点说一下. 1.页缓存技术 + 磁盘顺序写 首先Kafka每次接收到数据都会往…
使用同步模式的时候,有3种状态保证消息被安全生产,在配置为1(只保证写入leader成功)的话,如果刚好leader partition挂了,数据就会丢失.还有一种情况可能会丢失消息,就是使用异步模式的时候,当缓冲区满了,如果配置为0(还没有收到确认的情况下,缓冲池一满,就清空缓冲池里的消息),数据就会被立即丢弃掉. 在数据生产时避免数据丢失的方法: 只要能避免上述两种情况,那么就可以保证消息不会被丢失.就是说在同步模式的时候,确认机制设置为-1,也就是让消息写入leader和所有的副本.还有,…
Kafka重复消费原因 底层根本原因:已经消费了数据,但是offset没提交. 原因1:强行kill线程,导致消费后的数据,offset没有提交. 原因2:设置offset为自动提交,关闭kafka时,如果在close之前,调用 consumer.unsubscribe() 则有可能部分offset没提交,下次重启会重复消费.例如: try { consumer.unsubscribe(); } catch (Exception e) { } try { consumer.close(); }…
在之前的基础上,基本搞清楚了Kafka的机制及如何运用.这里思考一下:Kafka中的消息会不会丢失或重复消费呢?为什么呢? 要确定Kafka的消息是否丢失或重复,从两个方面分析入手:消息发送和消息消费 1.消息发送 Kafka消息发送有两种方式:同步(sync)和异步(async),默认是同步方式,可通过producer.type属性进行配置.Kafka通过配置request.required.acks属性来确认消息的生产: 0---表示不进行消息接收是否成功的确认: 1---表示当Leader…
1. 保证消息被消费 即使消息发送到了消息队列,消息也不会万无一失,还是会面临丢失的风险. 我们以 Kafka 为例,消息在Kafka 中是存储在本地磁盘上的, 为了减少消息存储对磁盘的随机 I/O,一般我们会将消息写入到操作系统的 Page Cache 中,然后在合适的时间将消息刷新到磁盘上. 例如,Kafka 可以配置当达到某一时间间隔,或者累积一定的消息数量的时候再刷盘,也就是所谓的异步刷盘. 不过,如果发生机器掉电或者机器异常重启,那么 Page Cache 中还没有来得及刷盘的消息就会…