OctConv:八度卷积复现】的更多相关文章

创建日期: 2020-07-04 17:19:39 简介:卷积神经网络非常适合处理图像相关任务,其优势一是权值共享策略,降低了模型复杂度和参数量,本质上也对应着生物视觉神经的感受野.二是其强大的特征提取能力,这也是目前视觉感知任务(分类检测分割等)性能提升的关键.而CNN模型的Bacebone(主干网络)主要负责的就是特征提取.特征提取能力的强弱直接决定了后面head的性能(head模块在的不同的任务下是不同的,简单的分类任务的head是最后接到全连接层上的,而分割任务的head是输出一组fea…
CNN卷积神经网络问世以来,在计算机视觉领域备受青睐,与传统的神经网络相比,其参数共享性和平移不变性,使得对于图像的处理十分友好,然而,近日由Facebook AI.新家坡国立大学.360人工智能研究院的研究人员提出的一种新的卷积操作OctConv使得在图像处理性能方面得到了重大突破与提升,OctConv和CNN中的卷积有什么不同呢? 论文下载地址: https://arxiv.org/pdf/1904.05049.pdf CNN网络中的卷积层主要用来提取图像特征,如下图所示,利用卷积核(也称滤…
觉得本文不错的可以点个赞.有问题联系作者微信cyx645016617,之后主要转战公众号,不在博客园和CSDN更新. 论文名称:"Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization" 论文地址:https://openaccess.thecvf.com/content_ICCV_2017/papers/Selvaraju_Grad-CAM_Visual_Explanations…
Caffe(卷积神经网络框架)Caffe,全称Convolution Architecture For Feature Extraction caffe是一个清晰,可读性高,快速的深度学习框架.作者是贾扬清,加州大学伯克利的ph.D,现就职于FaceBook.caffe的官网是http://caffe.berkeleyvision.org/. Caffe是一个清晰而高效的深度学习框架,其作者是博士毕业于UC Berkeley的 贾扬清,目前在Google工作. Caffe是纯粹的C++/CUDA…
时空上下文视觉跟踪(STC)算法的解读与代码复现 zouxy09@qq.com http://blog.csdn.net/zouxy09 本博文主要是关注一篇视觉跟踪的论文.这篇论文是Kaihua Zhang等人今年投稿到一个会议的文章,因为会议还没有出结果,所以作者还没有发布他的Matlab源代码.但为了让我们先睹为快,作者把论文放在arxiv这个网站上面供大家下载了.对于里面所描述的神奇的效果,大家都跃跃欲试,也有人将其复现了.我这里也花了一天的时间去复现了单尺度的C++版本,主要是基于Op…
目录 1. 尺度空间理论(scale-space theory) 2. OctConv 3. 启发 论文:Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution 1. 尺度空间理论(scale-space theory) 参考:维基百科 如果我们要处理的图像目标的大小/尺度(scale)是未知的,那么我们可以采用尺度空间理论. 其核心思想是将图像用多种…
5月的最后一天,需要写点什么. 通过前几篇博客对Faster-RCNN算是有了一个比较全面的认识,接下来的半个月断断续续写了一些代码,基本上复现了论文.利用torchvision的VGG16预训练权重,在VOC02007trainval训练13个epoch,最后VOC2007test的map在0.69左右.当然利用caffe预训练的权重结果略好一些. 关于复现过程:起初只是对目标检测方向突然有了兴趣,想玩一玩,但是只跑跑代码看看结果带给人的新奇感仅仅持续了几分钟,所以找了份代码深究了一下,最后结…
『TensorFlow』SSD源码学习_其一:论文及开源项目文档介绍 『TensorFlow』SSD源码学习_其二:基于VGG的SSD网络前向架构 『TensorFlow』SSD源码学习_其三:锚框生成 『TensorFlow』SSD源码学习_其四:数据介绍及TFR文件生成 『TensorFlow』SSD源码学习_其五:TFR数据读取&数据预处理 『TensorFlow』SSD源码学习_其六:标签整理 『TensorFlow』SSD源码学习_其七:损失函数 『TensorFlow』SSD源码学习…
. 过去几年发表于各大 AI 顶会论文提出的 400 多种算法中,公开算法代码的仅占 6%,其中三分之一的论文作者分享了测试数据,约 54% 的分享包含“伪代码”.这是今年 AAAI 会议上一个严峻的报告. 人工智能这个蓬勃发展的领域正面临着实验重现的危机,就像实验重现问题过去十年来一直困扰着心理学.医学以及其他领域一样.最根本的问题是研究人员通常不共享他们的源代码. 可验证的知识是科学的基础,它事关理解.随着人工智能领域的发展,打破不可复现性将是必要的. Learning Feature Py…
keras 构建模型很简单,上手很方便,同时又是 tensorflow 的高级 API,所以学学也挺好. 模型复现在我们的实验中也挺重要的,跑出了一个模型,虽然我们可以将模型的 checkpoint 保存,但再跑一遍,怎么都得不到相同的结果. 用 keras 实现模型,想要能够复现,首先需要设置各个可能的随机过程的 seed,如 np.random.seed(1).然后分为两种情况: 代码不要在 GPU 上跑,而是限制在 CPU 上跑,此时可以自行设置 fit 函数的 batch_size 参数…