mahout分类学习和遇到的问题总结】的更多相关文章

这段时间学习Mahout有喜有悲.在这里首先感谢樊哲老师的指导.以下列出关于这次Mahout分类的学习和遇到的问题,还请大家多多提出建议:(全部文件操作都使用是在hdfs上边进行的). (本人用的环境是Mahout0.9+hadoop-2.2.0) 一.首先将预分类文件转换为序列化化存储: 下边图片列出的是使用的20newsgroup数据(我使用的linux上的eclipse.然后在eclipse上边安装的eclipse-hadoop插件),数据图片例如以下: watermark/2/text/…
分类看起来比聚类和推荐麻烦多了 分类算法与聚类和推荐算法的不同:必须是有明确结果的,必须是有监督的,主要用于预测和检测 Mahout的优势 mahout的分类算法对资源的要求不会快于训练数据和测试数据的增长速度,而且可以转换为分布式应用(数据规模如果不够大 Mahout表现可能不及其他类型的系统) 关键词表: Key idea Description Model A computer program that makes decisions; in classification, the out…
前言: 上一篇比较详细的介绍了卡方检验和卡方分布.这篇我们就实际操刀,找到一些训练集,正所谓纸上得来终觉浅,绝知此事要躬行.然而我在躬行的时候,发现了卡方检验对于文本分类来说应该把公式再变形一般,那样就完美了. 目录: 文本分类学习(一)开篇 文本分类学习(二)文本表示 文本分类学习(三)特征权重(TF/IDF)和特征提取        文本分类学习(四)特征选择之卡方检验 文本分类学习(五)机器学习SVM的前奏-特征提取(卡方检验续集) 一,回顾卡方检验 1.公式一: 先回顾一下卡方检验: 卡…
前言: 经历过文本的特征提取,使用LibSvm工具包进行了测试,Svm算法的效果还是很好的.于是开始逐一的去了解SVM的原理. SVM 是在建立在结构风险最小化和VC维理论的基础上.所以这篇只介绍关于SVM的理论基础.参考this paper: https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/svmtutorial.pdf 目录: 文本分类学习(一)开篇 文本分类学习(二)文本表示 文本分类学习(三)特征权重…
前言: 对于SVM的了解,看前辈写的博客加上读论文对于SVM的皮毛知识总算有点了解,比如线性分类器,和求凸二次规划中用到的高等数学知识.然而SVM最核心的地方应该在于核函数和求关于α函数的极值的方法:SMO算法(当然还有很多别的算法.libsvm使用的是SMO,SMO算法也是最高效和简单的),还有松弛变量..毕设答辩在即,这两个难点只能拖到后面慢慢去研究了. 于是我便是用了LibSvm,也就是台湾大学某某教授写的一个专门用于svm的工具包,其中有java语言的,python语言的,c语言的.我只…
首先科普一下python里面对于数组的处理,就是如果获取数组大小,以及数组元素数量,这个概念是不一样的,就是一个size和len处理不用.老规矩,上代码: arr2 = np.array([-19.51679711, -18.06166131, -16.65282549, 8.70287809,9.9485567 , 11.23867649, 3,4]) pprint(arr2.size) pprint(len(arr2)) >>8 >>8 貌似两者没啥区别,但是真的是这样吗? C…
TensorFlow基础笔记(3) cifar10 分类学习 CIFAR-10 is a common benchmark in machine learning for image recognition. http://www.cs.toronto.edu/~kriz/cifar.html Code in this directory demonstrates how to use TensorFlow to train and evaluate a convolutional neural…
实验简介 本次课程学习了Mahout 的 Bayes 分类算法. 一.实验环境说明 1. 环境登录 无需密码自动登录,系统用户名 shiyanlou 2. 环境介绍 本实验环境采用带桌面的Ubuntu Linux环境,实验中会用到桌面上的程序: XfceTerminal: Linux 命令行终端,打开后会进入 Bash 环境,可以使用 Linux 命令: Firefox:浏览器,可以用在需要前端界面的课程里,只需要打开环境里写的 HTML/JS 页面即可: GVim:非常好用的编辑器,最简单的用…
指令分类: 1.算数和逻辑指令 2.比较指令 3.跳转指令 4.移位指令 5.程序状态字访问指令 6.存储器访问指令 ++++++++++++++++++++++++++++++++++++++++++++++++++ 学习指令的资料<arm汇编手册(中文版).chm> ,注:这个资料是 ARM汇编手册,我们用的是GNU的汇编,所以语法 大小写上是有差别的. 使用上一篇文章中的汇编程序来,学习使用每个指令的用法. 一.算数和逻辑指令 1.mov指令 作用.格式.例子 从另一个寄存器.被移位的寄…
上一篇中,主要说的就是词袋模型.回顾一下,在进行文本分类之前,我们需要把待分类文本先用词袋模型进行文本表示.首先是将训练集中的所有单词经过去停用词之后组合成一个词袋,或者叫做字典,实际上一个维度很大的向量.这样每个文本在分词之后,就可以根据我们之前得到的词袋,构造成一个向量,词袋中有多少个词,那这个向量就是多少维度的了.然后就把这些向量交给计算机去计算,而不再需要文本啦.而向量中的数字表示的是每个词所代表的权重.代表这个词对文本类型的影响程度. 在这个过程中我们需要解决两个问题:1.如何计算出适…