BZOJ4320 : ShangHai2006 Homework】的更多相关文章

对于<=sqrt(300000)的询问,对每个模数直接记录结果,每次加入新数时暴力更新每个模数的结果. 对于>sqrt(300000)的询问,枚举倍数,每次查询大于等于这个倍数的最小数是多少,这个操作通过将询问逆序使用并查集支持. #include<cstdio> #include<algorithm> #define rep(i,l,r) for (int i=(l); i<=(r); i++) using namespace std; ,M=,B=; char…
考虑根号分块.对于<√3e5的模数,每加入一个数就暴力更新最小值:对于>√3e5的模数,由于最多被分成√3e5块,查询时对每一块找最小值,这用一些正常的DS显然可以做到log,但不太跑得过.考虑并查集在序列上的奇技淫巧.加点不太能做,考虑离线改成删点.并查集维护下一个未删除的点即可. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<…
取$M=\sqrt{300000}$. 设$g[i]$表示程序员的$\bmod i$最小的值. 若$Y<M$,那么可以在$O(M)$时间内完成对所有$g[i]$的修改,$O(1)$时间内完成查询. 若$Y\geq M$,那么枚举$Y$的倍数,等价于查询一段区间内的最小值,可以通过分块做到$O(M)$修改,$O(1)$查询. 因为倍数不超过$M$个,所以询问的总复杂度为$O(M)$. 所以总时间复杂度为$O(n\sqrt{300000})$. #include<cstdio> const…
[BZOJ4320]ShangHai2006 Homework Description   1:在人物集合 S 中加入一个新的程序员,其代号为 X,保证 X 在当前集合中不存在.    2:在当前的人物集合中询问程序员的mod Y 最小的值. (为什么统计这个?因为拯救过世界的人太多了,只能取模)  Input 第一行为用空格隔开的一个个正整数 N.  接下来有 N 行,若该行第一个字符为“A” ,则表示操作 1:若为“B”,表示操作 2:  其中 对于 100%的数据:N≤100000, 1≤…
ShangHai2006 Homework Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 918  Solved: 460[Submit][Status][Discuss] Description   1:在人物集合 S 中加入一个新的程序员,其代号为 X,保证 X 在当前集合中不存在.    2:在当前的人物集合中询问程序员的mod Y 最小的值. (为什么统计这个?因为拯救 过世界的人太多了,只能取模)    Input 第一行为用空格隔开的…
4320: ShangHai2006 Homework Time Limit: 10 Sec Memory Limit: 128 MB Description 1:在人物集合 S 中加入一个新的程序员,其代号为 X,保证 X 在当前集合中不存在. 2:在当前的人物集合中询问程序员的mod Y 最小的值. (为什么统计这个?因为拯救 过世界的人太多了,只能取模) Input 第一行为用空格隔开的一个个正整数 N. 接下来有 N 行,若该行第一个字符为"A" ,则表示操作 1:若为&quo…
4320: ShangHai2006 Homework 链接 分析: 分块.对权值模数进行分块,模数小于$\sqrt V$的($V$为权值上界),暴力处理. 模数大于$\sqrt V$的,设模数是k,枚举k的倍数,然后查询大于[k,2k]之间的最小的数x,这个区间的mod k最小的数就是x-k.k的倍数共有$\sqrt V$个,每次查询,再对权值进行分块,并维护后缀最小值,做到$O(1)$查询.复杂度$O(n \sqrt V)$ 代码: #include<cstdio> #include<…
若Y小于等于sqrt(300000),暴力,对所有的插入的数都更新mn[i]. 若Y大于sqrt(300000),枚举kY,用并查集维护>=i的第一个数,这样只支持删除操作是O(1),然后倒着枚举一边,删除一个数x那么就fa[x]=fa[x+1] #include<algorithm> #include<iostream> #include<cstdlib> #include<cstring> #include<cstdio> #inclu…
BZOJ \(\mathbb{mod}\)一个数\(y\)的最小值,可以考虑枚举剩余系,也就是枚举区间\([0,y),[y,2y),[2y,3y)...\)中的最小值(求后缀最小值也一样)更新答案,复杂度是\(O(\frac ny)\)的.注意到\(y>\sqrt n\)时,枚举次数\(<\sqrt n\). 我们可以对\(y\)根号分治,设\(m=\sqrt{V}\)(\(V\)是值域). 当\(y\leq m\)时,可以维护一个大小为\(m\)的桶\(s_i\)(表示模数为\(i\)时的\…
按根号300000=m分情况讨论 查询是,当x小于等于m,那么可以暴力记录直接出解:否则,用分块维护区间值,查询的时候以x为步长跳根号m次取最小值即可 还有一种并查集方法,来自https://www.cnblogs.com/CQzhangyu/p/7088337.html #include<iostream> #include<cstdio> using namespace std; const int N=300010,M=550; int n=300000,m=n/M,q,i,…