这是算法考试的最后一题,当时匆匆写了个基于 Subset Sum 的解法,也没有考虑是否可行. 问题描述如下: 给定 \(n\) 个正整数 \(a_1 \dots a_n\) ,设下标的整数集合 \(V=\{1,2,3,\dots,n\}\) , 确定是否有三个不相交的子集 \(I,J,K \sub V\) ,满足: \[\sum_{i \in I} a_i = \sum_{j \in J}a_j = \sum_{k \in K} a_k = \frac{sum}{3} \] 其中, \(sum…