1.RBM简介 受限玻尔兹曼机(Restricted Boltzmann Machines,RBM)最早由hinton提出,是一种无监督学习方法,即对于给定数据,找到最大程度拟合这组数据的参数.RBM常用于降维,分类,回归与协同过滤,特征学习甚至 topic model ,其网络结构如下: RBM是一种两层的贝叶斯网络,是Deep Blief Network 的基本组成成分,该网络可网络结构有 n个可视节点和m个隐藏节点 ,其中每个可视节点只与m个隐藏节点相关,与其他可视节点独立,对于隐藏节点同…
1.RBM简介 受限玻尔兹曼机(Restricted Boltzmann Machines,RBM)最早由hinton提出,是一种无监督学习方法,即对于给定数据,找到最大程度拟合这组数据的参数.RBM常用于降维,分类,回归与协同过滤,特征学习甚至 topic model ,其网络结构如下: RBM是一种两层的贝叶斯网络,是Deep Blief Network 的基本组成成分,该网络可网络结构有 n个可视节点和m个隐藏节点 ,其中每个可视节点只与m个隐藏节点相关,与其他可视节点独立,对于隐藏节点同…
Suppose you ask a bunch of users to rate a set of movies on a 0-100 scale. In classical factor analysis, you could then try to explain each movie and user in terms of a set of latent factors. For example, movies like Star Wars and Lord of the Rings m…
参考论文:1.Stacks of Convolutional Restricted Boltzmann Machines for Shift-Invariant Feature Learning                     2.Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations    预备知识:http://blog.csdn.net…
转载,原贴地址:Introduction to Restricted Boltzmann Machines,by Edwin Chen, 2011/07/18. Suppose you ask a bunch of users to rate a set of movies on a 0-100 scale. In classical factor analysis, you could then try to explain each movie and user in terms of a…
面对复杂的非线性可分的样本是,使用浅层分类器如Logistic等需要对样本进行复杂的映射,使得样本在映射后的空间是线性可分的,但在原始空间,分类边界可能是复杂的曲线.比如下图的样本只是在2维情形下的示例,假设有100维度,即特征数目是100,若使用logistic来做分类,对于这种线性不可分的情形,要对特征进行各种形式的组合映射,然后用映射后扩充的特征进行分类,可能会增加大量的参数,计算复杂性可想而知,而且可能会造成严重的over-fitting,可见logistic分类的局限性,下面引入NN.…
能量模型的概念从统计力学中得来,它描述着整个系统的某种状态,系统越有序,系统能量波动越小,趋近于平衡状态,系统越无序,能量波动越大.例如:一个孤立的物体,其内部各处的温度不尽相同,那么热就从温度较高的地方流向温度较低的地方,最后达到各处温度都相同的状态,也就是热平衡的状态.在统计力学中,系统处于某个状态的相对概率为,即玻尔兹曼因子,其中T表示温度,是玻尔兹曼常数,是状态的能量.玻尔兹曼因子本身并不是一个概率,因为它还没有归一化.为了把玻尔兹曼因子归一化,使其成为一个概率,我们把它除以系统所有可能…
受限玻尔兹曼机对于当今的非监督学习有一定的启发意义. 深度信念网络(DBN, Deep Belief Networks)于2006年由Geoffery Hinton提出.…
今天得主题是BP算法.大规模的神经网络可以使用batch gradient descent算法求解,也可以使用 stochastic gradient descent 算法,求解的关键问题在于求得每层中每个参数的偏导数,BP算法正是用来求解网络中参数的偏导数问题的. 先上一张吊炸天的图,可以看到BP的工作原理: 下面来看BP算法,用m个训练样本集合来train一个神经网络,对于该模型,首先需要定义一个代价函数,常见的代价函数有以下几种: 1)0-1损失函数:(0-1 loss function)…
转自:http://deeplearning.net/tutorial/rbm.html http://blog.csdn.net/mytestmy/article/details/9150213 能量函数 一个事物有相应的稳态,如在一个碗内的小球会停留在碗底,即使受到扰动偏离了碗底,在扰动消失后,它会回到碗底.学过物理的人都知道,稳态是它势能最低的状态.因此稳态对应与某一种能量的最低状态.将这种概念引用到Hopfield网络中去,Hopfield构造了一种能量函数的定义.这是他所作的一大贡献.…