CNN归纳偏好】的更多相关文章

机器学习 一.机器学习概念 啥是机器学习 机器学习:假设用P来评估计算机程序在某任务类T上的性能,若一个程序通过利用经验E在T中任务上获得了性能改善,则关于T和P,该程序对E进行了学习 通俗讲:通过计算的方式,利用经验来改善系统自身性能 研究主要内容:"学习算法"--> 从数据中产生模型的算法 基本术语 模型(model):全局性结果:模式(mode):局部性结果 数据集(data set):记录的集合(机器学习开源数据集) 样本(sample).示例(instance):关于一…
书籍位置: /Users/baidu/Documents/Data/Interview/机器学习-数据挖掘/<机器学习_周志华.pdf> 一共442页.能不能这个周末先囫囵吞枣看完呢.哈哈哈. 当然了,我觉得Spark上面的实践其实是非常棒的.有另一个系列文章讨论了Spark. 还有另一篇读书笔记(Link)是关于<机器学习实战>.实战经验也很重要. P1 一般用模型指全局性结果(例如决策树),用模式指局部性结果(例如一条规则). P3 如果预测的是离散值,那就是分类-classi…
1. 偏差与方差 - 机器学习算法泛化性能分析 在一个项目中,我们通过设计和训练得到了一个model,该model的泛化可能很好,也可能不尽如人意,其背后的决定因素是什么呢?或者说我们可以从哪些方面去改进从而使下次得到的model更加令人满意呢? ”偏差-方差分解(bias-variance decomposition)“是解释学习算法泛化能力性能的一种重要工具.偏差-方差分解试图对学习算法的期望泛化错误率进行拆解. 假设测试样本为x,yd 为 x 在数据集中的标记(注意,有可能出现噪声使得 y…
作为最早关注人工智能技术的媒体,机器之心在编译国外技术博客.论文.专家观点等内容上已经积累了超过两年多的经验.期间,从无到有,机器之心的编译团队一直在积累专业词汇.虽然有很多的文章因为专业性我们没能尽善尽美的编译为中文呈现给大家,但我们一直在进步.一直在积累.一直在提高自己的专业性.两年来,机器之心编译团队整理过翻译词汇对照表「红宝书」,编辑个人也整理过类似的词典.而我们也从机器之心读者留言中发现,有些人工智能专业词汇没有统一的翻译标准,这可能是因地区.跨专业等等原因造成的.举个例子,DeepM…
特定领域知识图谱(Domain-specific KnowledgeGraph:DKG)融合方案:技术知识前置[一]-文本匹配算法.知识融合学术界方案.知识融合业界落地方案.算法测评KG生产质量保障 0.前言 本项目主要围绕着特定领域知识图谱(Domain-specific KnowledgeGraph:DKG)融合方案:技术知识前置[一]-文本匹配算法.知识融合学术界方案.知识融合业界落地方案.算法测评KG生产质量保障讲解了文本匹配算法的综述,从经典的传统模型到孪生神经网络"双塔模型"…
括号表示概念出现的其他页码, 如有兴趣协同整理,请到issue中认领章节 完整版见我的github:ahangchen 觉得还不错的话可以点个star ^_^ 第一章 绪论 Page2: 标记(label) 示例结果的信息,例如"好瓜",称为标记 Page2: 假设(269)(hypothesis) 学得模型对应了数据的某种潜在的规律,因此亦称假设 Page2: 示例(instance) 数据集中的每条记录是关于某个事件或对象的描述,称为一个"示例"或"样…
<机器学习>这本书算是很好的一本了解机器学习知识的一本入门书籍吧,是南京大学周志华老师所著的鸿篇大作,很早就听闻周老师大名了,算是国内机器学习领域少数的大牛了吧,刚好研究生做这个方向相关的内容,所以今天买了一本所谓的西瓜书,准备研读,光读书记性不好,边读边做笔记练习印象深刻,接下来我就把自己的学习过程按每章节的内容整理如下: Day1 第一章 绪论部分 本书作者周志华老师通过聊天的口吻开篇,以日常生活的小案例和场景,向读者介绍什么是机器学习,以及什么是学习算法.在这一章介绍了很多机器学习相关的…
1. 线性模型简介 0x1:线性模型的现实意义 在一个理想的连续世界中,任何非线性的东西都可以被线性的东西来拟合(参考Taylor Expansion公式),所以理论上线性模型可以模拟物理世界中的绝大多数现象.而且因为线性模型本质上是均值预测,而大部分事物的变化都只是围绕着均值而波动,即大数定理. 事物发展的混沌的线性过程中中存在着某种必然的联结.事物的起点,过程,高潮,衰退是一个能被推演的过程.但是其中也包含了大量的偶然性因素,很难被准确的预策,只有一个大概的近似范围.但是从另一方面来说,偶然…
目录 线性回归 用线性回归模型拟合非线性关系 梯度下降法 最小二乘法 线性回归用于分类(logistic regression,LR) 目标函数 如何求解\(\theta\) LR处理多分类问题 线性回归 假设存在线性相关关系:\(y=a+bx\) 均方误差是回归任务中最常用的性能度量指标.因此,其损失函数为: \[ J(a,b)=\frac{1}{2m}\sum_{i=1}^{m}(y^{'(i)}-y^{(i)})^2=\frac{1}{2m}\sum_{i=1}^{m}(a+bx^{(i)…
目录 I. 大师对人工智能和机器学习的看法 II. Introduction A. What is Machine Learning 什么是机器学习 B. Basic terms 基础术语 C. Inductive learning & Hypothesis space 归纳学习和假设空间 D. Inductive bias & NFL 归纳偏置和"天下没有免费的午餐定理" E. History III. 模型评估与选择 A. Overfitting & Und…