一个小需求---实现车牌识别. 目前有两个想法 1. 调云在线的接口或者使用SDK做开发(配置环境和变异第三方库麻烦,当然使用python可以避免这些问题) 2. 自己实现车牌识别算法(复杂) 一开始准备使用百度云文字识别C++ SDK来做,发现需要准备curl.jsoncpp和OpenCV,并且curl和jsoncpp需要自己编译,很麻烦,所以换用了python来做,真的是顺畅简单. 1. 安装python环境(我用python3.7) python官网下载地址:https://www.pyt…
一个小需求---实现车牌识别. 目前有两个想法 调云在线的接口或者使用SDK做开发(配置环境和编译第三方库很麻烦,当然使用python可以避免这些问题) 自己实现车牌识别算法(复杂) ! 一开始准备使用百度云文字识别C++ SDK来做,发现需要准备curl.jsoncpp和OpenCV,并且curl和jsoncpp需要自己编译,很麻烦,所以换用了python来做,真的是顺畅简单. 安装python环境(我用python3.7) python官网下载地址:https://www.python.or…
在上篇文档中作者已经简单的介绍了EasyPR,现在在本文档中详细的介绍EasyPR的开发过程. 正如淘宝诞生于一个购买来的LAMP系统,EasyPR也有它诞生的原型,起源于CSDN的taotao1233的一个博客,博主以读书笔记的形式记述了通过阅读“Mastering OpenCV”这本书完成的一个车牌系统的雏形. 这个雏形有几个特点:1.将车牌系统划分为了两个过程,即车牌检测和字符识别.2.整个系统是针对西班牙的车牌开发的,与中文车牌不同.3.系统的训练模型来自于原书.作者基于这个系统,诞生了…
我正在做一个开源的中文车牌识别系统,Git地址为:https://github.com/liuruoze/EasyPR. 我给它取的名字为EasyPR,也就是Easy to do Plate Recognition的意思.我开发这套系统的主要原因是因为我希望能够锻炼我在这方面的能力,包括C++技术.计算机图形学.机器学习等.我把这个项目开源的主要目的是:1.它基于开源的代码诞生,理应回归开源:2.我希望有人能够一起协助强化这套系统,包括代码.训练数据等,能够让这套系统的准确性更高,鲁棒性更强等等…
​第八篇:字符识别 车牌定位.车牌倾斜校正.车牌字符分割都是为车牌字符识别做的前提工作,这些前提工作直接关系到车牌识别系统的性能.车牌字符识别是车牌识别系统的核心部分,车牌字符识别的准确率是衡量车牌识别系统的一个很重要的指标. 一般字符识别的方法就是采用模式识别方法,简单的来说模式识别就是先通过提取输入模板的特征,然后通过模板的特征对样本进行分类,从而识别出样本.模式识别主要包括:数据采集.预处理.特征提取.特征匹配,其结构框架如图: 字符识别是模式识别的一个重要应用,首先提取待识别字符的特征:…
第四篇:车牌定位 车牌定位就是采用一系列图像处理或者数学的方法从一幅图像中将车牌准确地定位出来.车牌定位提取出的车牌是整个车牌识别系统的数据来源,它的效果的好坏直接影响到整个系统的表现,只有准确地定位出车牌,才会有后续的车牌分割与字符识别. 目前车牌定位有两大类.基于灰度.基于彩色. 基于灰度: 我们采用的是基于灰度的形态学的车牌定位:首先根据车牌区域中丰富的纹理特征,提取车牌图像中垂直方向的边缘并二值化.然后对得到的二值图像进行数学形态学(膨胀.腐烛.幵闭运算等)的运算,使得车牌区域形成一个闭…
第三篇:系统的整体架构 LPR系统大体上可由图像采集系统,图像处理系统,数据库管理系统三个子系统组成.它综合了通讯.信息.控制.传感.计算机等各种先进技术,构成一个智能电子系统. 图像采集系统:图像采集系统主要由传感器.辅助照明设备和图像采集设备组成,主要功能是采集车辆图像.当有车辆经过时会触发感应装置,感应装置一般为地感线圈,触发成功后摄像机或照相机会自动采集当前的图像,最后将采集到的图像传送到计算机或手持的嵌入式系统进行处理. 图像处理系统:图像处理系统即为本文主要讨论的算法处理模块,为整个…
第二篇:车牌的特征及难点 2.1  对我国车牌的认识 我国目前使用的汽车牌号标准是 2007 年开始实施的<中华人民共和国机动车号牌>GA36-2007(2010 年修订).根据 GA36-2007 对机动车牌号编排规则规定,我国汽车的车牌构造特点如下: 汽车车牌号的编排规则:我国的标准车辆车牌是由一个省份汉字(军警车牌为其他汉字)后跟字母或阿拉伯数字组成的 7 个字序列.标准车牌的的具体排列格式是:X1X2·X3X4X5X6X7,X1是各省.直辖市的简称或军警,X2是英文字母,代表该汽车所在…
移动端车牌识别是一项基于OCR识别的应用技术.移动端车牌识别过程主要包含五个步骤,其中包括图像采集.图像预处理.车牌定位.字符分割.字符识别.输出结果等一系列计算机算法运算, 第一步[图像采集]:此步骤通过前端采集视频流数据,再通过硬件或软件对视频流进行进行解帧识别(常见的车牌识别一体机为硬识别,移动端设备往往通过软件识别,为软识别),移动端车牌识别的识别速度为毫秒级别,相较于大家平时用的手机扫码,移动端车牌识别的识别速度更为快速.在视频模式下采集图像时,移动端车牌识别会自动触发,无需外接信号.…
同行业中,别人标配有的产品我有,别人没有的产品我们也有,如此才能增强竞争力,通过优化创新,前端车牌识别SDK功能,性能上,都是行业NO.1的水平.车牌识别sdk这个用于越来越多人集成了,汽车保有量日益上升,越来越多公司开发车辆管理系统,在系统开发过程中,对于OCR识别算法,不少开发人员为了节省成本,在开源中寻找车牌识别算法,耗费了不少人力物力以及时间成本.易泊时代车牌识别算法经历了十几春秋,商用来说,再没难度. 一个好的算法并非一朝一夕,经得住风霜,耐得住寂寞,手机前端车牌识别SDK扫描识别,速…