Q-REG论文阅读】的更多相关文章

本文来自李纪为博士的论文 Deep Reinforcement Learning for Dialogue Generation. 1,概述 当前在闲聊机器人中的主要技术框架都是seq2seq模型.但传统的seq2seq存在很多问题.本文就提出了两个问题: 1)传统的seq2seq模型倾向于生成安全,普适的回答,例如“I don’t know what you are talking about”.为了解决这个问题,作者在更早的一篇文章中提出了用互信息作为模型的目标函数.具体见A Diversi…
论文阅读:<Interconnected Question Generation with Coreference Alignment and Conversion Flow Modeling> 作者:Yifan Gao, Piji Li, Irwin King, Michael R.yu 论文来源:ACL2019 WHAT CQG会话问题生成,对于给定文章最终想要生成会话QA对的形式,并且要在每轮对话中实现平稳的过渡. 使用共指想要生成相互关联的问题. HOW 一. 模型 1.多源编码器(使…
[论文阅读笔记] node2vec:Scalable Feature Learning for Networks 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 由于DeepWalk的随机游走是完全无指导的随机采样,即随机游走不可控.本文从该问题出发,设计了一种有偏向的随机游走策略,使得随机游走可以在DFS和BFS两种极端搜索方式中取得平衡. (2) 主要贡献 Contribution: 本篇论文主要的创新点在于改进了随机游走的策略,定义了两个参数p和q,使得随机游走在BFS…
[论文阅读笔记] Are Meta-Paths Necessary? Revisiting Heterogeneous Graph Embeddings 本文结构 解决问题 主要贡献 算法原理 参考文献 (1) 解决问题 传统的异构网络中的随机游走常常偏向于采样节点数比较多的节点类型.为了克服该问题,metapath2vec提出了基于元路径的随机游走,然而使用元路径策略要么要求先验知识,要么需要通过额外的操作来结合所有短的元路径到一个预定义的序列长度(如多元路径的情况,如何取舍,哪个更重要?).…
[论文阅读笔记] Unsupervised Attributed Network Embedding via Cross Fusion 本文结构 解决问题 主要贡献 算法原理 实验结果 参考文献 (1) 解决问题 现在常常用来处理属性网络表征的方式有两种:(1)在网络结构上传播属性(2)通过自编码器架构. 这两种常用的属性网络表征方法有各自的局限性和优点:(1)基于传播的方法依赖于网络中现有的边来传播信息,因此往往偏向于建模网络结构信息而非节点属性信息,从而更加擅长于处理结构信息(可以通过多层叠…
想着CSDN还是不适合做论文类的笔记,那里就当做技术/系统笔记区,博客园就专心搞看论文的笔记和一些想法好了,[]以后中框号中间的都算作是自己的内心OS 有时候可能是问题,有时候可能是自问自答,毕竟是笔记嘛 心路历程记录:然后可能有很多时候都是中英文夹杂,是因为我觉得有些方法并没有很好地中文翻译的意思(比如configuration space),再加上英文能更好的搜索.希望大家能接受这种夹杂写法,或者接受不了的话直接关掉这个看原文 前言:这是一篇02年的关于Motion Planning - P…
首先这是2018年一篇关于概念漂移综述的论文[1]. 最新的研究内容包括 (1)在非结构化和噪声数据集中怎么准确的检测概念漂移.how to accurately detect concept drift in unstructured and noisy datasets (2)怎么用一种可解释的方法来定量理解概念漂移.how to quantitatively understand concept drift in a explainable way (3)如何有效的结合相关知识和概念漂移.…
白翔的CRNN论文阅读 1.  论文题目 Xiang Bai--[PAMI2017]An End-to-End Trainable Neural Network for Image-based Sequence Recognition and Its Application to Scene Text Recognition 2.  论文思路和方法 1)  问题范围: 单词识别 2)  CNN层:使用标准CNN提取图像特征,利用Map-to-Sequence表示成特征向量: 3)  RNN层:使…
前两天,我和大家谈了如何阅读教材和备战数模比赛应该积累的内容,本文进入到数学建模七日谈第三天:怎样进行论文阅读. 大家也许看过大量的数学模型的书籍,学过很多相关的课程,但是若没有真刀真枪地看过论文,进行过模拟比赛,恐怕还是会捉襟见肘,不能够游刃有余地应对真正比赛中可能会遇到的一些困难.笔者就自己的经验稍稍给大家谈谈,在看了很多数学模型的书籍之后,如何通过论文阅读,将我们的水平上升一个新的台阶,达到一个质的飞跃! 首先,大家要搞清楚教材和论文的区别.教材的主要目的是介绍方法,前人总结出来的最经典的…
作者:刘旭晖 Raymond 转载请注明出处 Email:colorant at 163.com BLOG:http://blog.csdn.net/colorant/ 更多论文阅读笔记 http://blog.csdn.net/colorant/article/details/8256145 == 目标问题 == 下一代的Hadoop框架,支持10,000+节点规模的Hadoop集群,支持更灵活的编程模型 == 核心思想 == 固定的编程模型,单点的资源调度和任务管理方式,使得Hadoop 1…