poj3666 Making the grade【线性dp】】的更多相关文章

问题描述 LG2893 POJ3666 题解 对于\(A\)中的每一个元素,都将存在于\(B\)中. 对\(A\)离散化. 设\(opt_{i,j}\)代表\([1,i]\),结尾为\(j\)的最小代价. \[opt_{i,j}=min_{k \in [1,m]} {opt_{i-1,k}+ |a_i-k|}\] \(\mathrm{Code}\) #include<iostream> #include<cstdio> #include<cstring> #includ…
给个$n<=2000$长度数列,可以把每个数改为另一个数代价是两数之差的绝对值.求把它改为单调不增or不减序列最小代价. 话说这题其实是一个结论题..找到结论应该就很好做了呢. 手玩的时候就有感觉,改造出来的数列的元素会不会全是原来数列里有的数?弄了几组发现没问题,但是还是踟蹰不前,不敢下手..然后我就智障的换思路了...这个故事告诉我们发现一个暂时没找到反例的结论一定要大胆实践,反正交到OJ上不要钱. 所以这题结论就上面那个.具体证明呢..我不会... 然后就简单了啊.有个很好想的状态$f[i…
题目大意:给你一个序列a[1....n],让你求一个序列b[1....n],满足 bi =a && bc,则最小的调整可以是把b变成c. 所以归纳可知上面结论成立. dp[i][j] 表示考虑前i个元素,最后元素为序列中 第j小元素的最优解,a[]数组存原始数组,b[]是对a从小到大排序. dp[i][j] = MIN(dp[i-1][k]) + abs(a[i]-b[j]), (0…
问题问的是最少可以把一个字符串分成几段,使每段都是回文串. 一开始想直接区间DP,dp[i][j]表示子串[i,j]的答案,不过字符串长度1000,100W个状态,一个状态从多个状态转移来的,转移的时候要枚举,这样时间复杂度是不可行的. 然后我就想降维度了,只能线性DP,dp[i]表示子串[0,i]的答案.这样可以从i-1转移到i,str[i]单独作一段或者str[i]能和前面的组成回文串,方程如下: dp[i]=min(dp[i-1]+1,dp[j-1]+1) (子串[j,i]是回文串) 现在…
题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=28214 题目大意:源串有如下变形:每次将串切为两半,位置颠倒形成新串.问经过K次变形后,与目标串相同的变形方案数.mod 1000000007. 解题思路: 奇葩的字符串DP.照着别人的题解写的,解释不出原理是什么. 首先统计出经过1次变形,就能和目标串相同的中间产物串(包含源串)的个数cnt.len表示源串长度,那么len-cnt就表示和目标串不同的个数. 用…
//Accepted 400 KB 109 ms //dp线性 //dp[i][j]=max(dp[i-1][k]+a[i][j-k]) //在前i门课上花j天得到的最大分数,等于max(在前i-1门课上花k天+在第i门课上花j-k天得到的分数) #include <cstdio> #include <cstring> #include <iostream> #include <queue> #include <cmath> #include &…
我们在解决一些线性区间上的最优化问题的时候,往往也能够利用到动态规划的思想,这种问题可以叫做线性dp.在这篇文章中,我们将讨论有关线性dp的一些问题. 在有关线性dp问题中,有着几个比较经典而基础的模型,例如最长上升子序列(LIS).最长公共子序列(LCS).最大子序列和等,那么首先我们从这几个经典的问题出发开始对线性dp的探索. 首先我们来看最长上升子序列问题. 这个问题基于这样一个背景,对于含有n个元素的集合S = {a1.a2.a3……an},对于S的一个子序列S‘ = {ai,aj,ak…
Maximum sum Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 33918   Accepted: 10504 Description Given a set of n integers: A={a1, a2,..., an}, we define a function d(A) as below: Your task is to calculate d(A). Input The input consists o…
题目链接:http://poj.org/problem?id=1050 思路分析: 该题目为经典的最大子矩阵和问题,属于线性dp问题:最大子矩阵为最大连续子段和的推广情况,最大连续子段和为一维问题,而最大子矩阵为二维问题, 可以考虑将二维问题转换为一维问题,即变为最大子段和问题即可求解: 先考虑暴力解法,暴力解法需要枚举子矩阵的左上角元素的坐标与子矩阵的右下角坐标即可枚举所有的子矩阵:对于每个子矩阵,考虑压缩子矩阵的每一列 元素,即求每一列的元素的和,这样子矩阵就转换为一维的情况,再使用最大子段…
线性DP经典题. dp[i]表示以i为结尾最大连续和,状态转移方程dp[i] = max (a[i] , dp[i - 1] + a[i]) AC代码: #include<cstdio> #define max(x, y) (x) > (y) ? (x) : (y) const int maxn = 1e6 + 5; const int inf = 1 << 30; int dp[maxn]; int main(){ int n, T; scanf("%d"…