OpenCV图像平滑处理】的更多相关文章

图像平滑处理 目标 本教程教您怎样使用各种线性滤波器对图像进行平滑处理,相关OpenCV函数如下: blur GaussianBlur medianBlur bilateralFilter 原理 Note 以下原理来源于Richard Szeliski 的著作 Computer Vision: Algorithms and Applications 以及 Learning OpenCV 平滑 也称 模糊, 是一项简单且使用频率很高的图像处理方法. 平滑处理的用途有很多, 但是在本教程中我们仅仅关…
1.cvSmooth函数 函数 cvSmooth 可使用简单模糊.简单无缩放变换的模糊.中值模糊.高斯模糊.双边滤波的不论什么一种方法平滑图像.每一种方法都有自己的特点以及局限. 没有缩放的图像平滑仅支持单通道图像,而且支持8位到16位的转换(与cvSoble和cvaplace相似)和32位浮点数到32位浮点数的变换格式. 简单模糊和高斯模糊支持 1- 或 3-通道, 8-比特 和 32-比特 浮点图像. 这两种方法能够(in-place)方式处理图像. 中值和双向滤波工作于 1- 或 3-通道…
#include "opencv2/imgproc/imgproc.hpp" #include "opencv2/highgui/highgui.hpp" using namespace std; using namespace cv; /// 全局变量 ; ; ; Mat src; Mat dst; char window_name[] = "Filter Demo 1"; /// 函数申明 int display_caption( char*…
1  图像平滑 图像平滑,可用来对图像进行去噪 (noise reduction) 或 模糊化处理 (blurring),实际上图像平滑仍然属于图像空间滤波的一种 (低通滤波) 既然是滤波,则图像中任一点 (x, y),经过平滑滤波后的输出 g(x, y) 如下: $\quad g(x, y) = \sum \limits_{s=-a}^a \: \sum \limits_{t=-b}^b {w(s, t)\:f(x+s, y+t)} $ 以 3X3 的滤波器为例 (即 a=b=1),则矩阵 M…
.About图像滤波 频率:可以这样理解图像频率,图像中灰度的分布构成一幅图像的纹理.图像的不同本质上是灰度分布规律的不同.但是诸如"蓝色天空"样的图像有着大面积近似的灰度强度,而某个充满微小物体的细微场景则灰度变化迅速.定义图像轻度变化快的信息为一幅图像的高频信息,鲤鱼边缘,定义变换缓慢的信息为低频信息.傅里叶变换或者余弦变换,可以明确的显示图像的频谱. 图像滤波意图在保证细节的情况下对目标图像的噪声进行抑制.是图像预处理中不可缺少的操作,其处理效果的好坏将直接影响到后续图像处理和分…
图像平滑算法 图像平滑与图像模糊是同一概念,主要用于图像的去噪.平滑要使用滤波器.为不改变图像的相位信息,一般使用线性滤波器,其统一形式例如以下: %20\Large%20g(i,j)=\sum_{k,l}f(i+k,j+l)h(k,l)" data-bd-imgshare-binded="1" style="margin: 0px; padding: 0px; border: 0px; max-width: 100%;" alt=""…
1.空间滤波基础概念 1.空间滤波基础 空间滤波一词中滤波取自数字信号处理,指接受或拒绝一定的频率成分,但是空间滤波学习内容实际上和通过傅里叶变换实现的频域的滤波是等效的,故而也称为滤波.空间滤波主要直接基于领域(空间域)对图像中的像素执行计算,用滤波器(也成为空间掩膜.核.模板和窗口)直接作用于图像本身完成类似的平滑. 2.空间滤波机理 对空间域中的每一点(x,y),重复如下操作: 对预先定义的以(x,y)为中心的领域内的像素进行预定义运算. 将(1)中运算的结果作为(x,y)点新的响应. 上…
使用不同的低筒滤波器对图像进行模糊 使用自定义的率弄起对图像进行卷积(2D卷积) 2D卷积 与信号一样,我们也可以对2D图像实施低通滤波,高通滤波等.LPF帮助我们去除噪声,模糊图像.而HPF帮助我们找到图像边缘. OpenCV提供的函数cv2.filter2D()可以让我们对一幅图像进行卷积操作.比如下面我们将对一幅图像使用平均滤波器,如一个5*5的平均滤波器核: 操作如下:将核放在图像的一个像素A上,求与核对应的图像上的25个像素的和,再取平均数,用这个平均数代替像素A的值.重复以上操作直到…
前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python 图像处理 OpenCV (3):图像属性.图像感兴趣 ROI 区域及通道处理」 「Python 图像处理 OpenCV (4):图像算数运算以及修改颜色空间」 「Python 图像处理 OpenCV (5):图像的几何变换」 「Python 图像处理 OpenCV (6):图像的阈值处理」 1.…
如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice "平滑处理"(smoothing)也称"模糊处理"(bluring),是一项简单且使用频率很高的图像处理方法.平滑处理的用途有很多,最常见的是用来减少图像上的噪点或者失真.在涉及到降低图像分辨率时,平滑处理是非常好用的方法. 图像滤波,就是在尽量保留图像细节特征的条件下对目…