Spark机器学习(5):SVM算法】的更多相关文章

本文申明:本文原创,如转载请注明原文出处. 引言:上一篇我们讲到了logistic回归,今天我们来说一说与其很相似的svm算法,当然问题的讨论还是在线性可分的基础下讨论的. 很多人说svm是目前最好的分类器,那我们就来看看我们的svm好在哪里. 一:初识svm 问题:用一条直线把下图的圆球和五角星分离开来. 解答:有N种分法,如下图: 附加题:找出最佳分类? 解答:如图: Exe me?鬼知道哪一条是最佳?? 等等这个最佳分类是不是等价于,地主让管家给两个儿子分地,是不是只要让两家之间一样多就可…
1.知识点 """ SVM,也称支持向量机:其优化核心为求取点到平面的距离最大化,主要是解决二分类问题 y = wx+b ,且 yi * y(i) >0 恒成立 思想:argmax{min[yi *(wx+b) ]/||w||} min[yi *(wx+b) ]:求取距离直线最近的样本点 argmax:求取距离最近的样本点距离最大的值 优化目标:max(w,b){1/||w||}, 约束条件yi * y(i) >=1 ,采用拉格朗日求取最小值 所有边界上的点(这个…
Spark 优缺点分析 以下翻译自Scikit. The advantages of support vector machines are: (1)Effective in high dimensional spaces.在高维空间表现良好. (2)Still effective in cases where number of dimensions is greater than the number of samples.在数据维度大于样本点数时候,依然可以起作用 (3)Uses a su…
Spark机器学习之协同过滤算法 一).协同过滤 1.1 概念 协同过滤是一种借助"集体计算"的途径.它利用大量已有的用户偏好来估计用户对其未接触过的物品的喜好程度.其内在思想是相似度的定义 1.2 分类 1.在基于用户的方法的中,如果两个用户表现出相似的偏好(即对相同物品的偏好大体相同),那就认为他们的兴趣类似.要对他们中的一个用户推荐一个未知物品, 便可选取若干与其类似的用户并根据他们的喜好计算出对各个物品的综合得分,再以得分来推荐物品.其整体的逻辑是,如果其他用户也偏好某些物品,…
版权声明:本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com.也可以加我的微博: @leftnoteasy 前言: 又有很长的一段时间没有更新博客了,距离上次更新已经有两个月的时间了.其中一个很大的原因是,不知道写什么好-_-,最近一段时间看了看关于SVM(Support Vector Machine)的文章,觉得SVM是一个非常有趣,而且自成一…
http://www.csdn.net/article/2012-12-28/2813275-Support-Vector-Machine 摘要:支持向量机(SVM)已经成为一种非常受欢迎的算法.本文主要阐述了SVM是如何进行工作的,同时也给出了使用Python Scikits库的几个示例.SVM作为一种训练机器学习的算法,可以用于解决分类和回归问题,还使用了kernel trick技术进行数据的转换,再根据转换信息在可能的输出之中找到一个最优的边界. [CSDN报道]支持向量机(Support…
机器学习中的算法(2)-支持向量机(SVM)基础 转:http://www.cnblogs.com/LeftNotEasy/archive/2011/05/02/basic-of-svm.html 版权声明: 本文由LeftNotEasy发布于http://leftnoteasy.cnblogs.com, 本文可以被全部的转载或者部分使用,但请注明出处,如果有问题,请联系wheeleast@gmail.com 前言: 又有很长的一段时间没有更新博客了,距离上次更新已经有两个月的时间了.其中一个很…
    分类 分类旨在将项目分为不同类别. 最常见的分类类型是二元分类,其中有两类,通常分别为正数和负数. 如果有两个以上的类别,则称为多类分类. spark.mllib支持两种线性分类方法:线性支持向量机(SVM)和逻辑回归. 线性SVM仅支持二进制分类,而逻辑回归支持二进制和多类分类问题. 对于这两种方法,spark.mllib支持L1和L2正则化变体. 训练数据集由MLlib中LabeledPoint的RDD表示,其中标签是从零开始的类索引:0,1,2,.... 一.基本思想 统计学习理论…
1. LDA基础知识 LDA(Latent Dirichlet Allocation)是一种主题模型.LDA一个三层贝叶斯概率模型,包含词.主题和文档三层结构. LDA是一个生成模型,可以用来生成一篇文档,生成时,首先根据一定的概率选择一个主题,然后在根据概率选择主题里面的一个单词,这样反复进行,就可以生成一篇文档:反过来,LDA又是一种非监督机器学习技术,可以识别出大规模文档集或语料库中的主题. LDA原始论文给出了一个很简单的例子.Arts.Budgets.Children.Educatio…
将Mahout on Spark 中的机器学习算法和MLlib中支持的算法统计如下: 主要针对MLlib进行总结 分类与回归 分类和回归是监督式学习; 监督式学习是指使用有标签的数据(LabeledPoint)进行训练,得到模型后,使用测试数据预测结果.其中标签数据是指已知结果的特征数据. 分类和回归的区别:预测结果的变量类型 分类预测出来的变量是离散的(比如对邮件的分类,垃圾邮件和非垃圾邮件),对于二元分类的标签是0和1,对于多元分类标签范围是0~C-1,C表示类别数目: 回归预测出来的变量是…
上次我们讲过<Spark机器学习(上)>,本文是Spark机器学习的下部分,请点击回顾上部分,再更好地理解本文. 1.机器学习的常见算法 常见的机器学习算法有:l   构造条件概率:回归分析和统计分类:l   人工神经网络:l   决策树:l   高斯过程回归:l   线性判别分析:l   最近邻居法:l   感知器:l   径向基函数核:l   支持向量机:l   通过再生模型构造概率密度函数:l   最大期望算法:l   graphical model :包括贝叶斯网和 Markov 随机…
第1章 初识机器学习 在本章中将带领大家概要了解什么是机器学习.机器学习在当前有哪些典型应用.机器学习的核心思想.常用的框架有哪些,该如何进行选型等相关问题. 1-1 导学 1-2 机器学习概述 1-3 机器学习核心思想 1-4 机器学习的框架与选型.. 第2章 初识MLlib 本章中,将介绍Spark的机器学习库,对比Spark当前两种机器学习库(MLLib/ML)的区别,同时介绍Spark机器学习库的应用场景以及行业应用优势. 2-1 MLlib概述 2-2 MLlib的数据结构 2-3 M…
本文主要介绍支持向量机理论推导及其工程应用. 1 基本介绍 支持向量机算法是一个有效的分类算法,可用于分类.回归等任务,在传统的机器学习任务中,通过人工构造.选择特征,然后使用支持向量机作为训练器,可以得到一个效果很好的base-line训练器. 支持向量机具有如下的优缺点, 优点: 高维空间有效: 维度大于样本数量的情况下,依然有效: 预测时使用训练样本的子集(也即支持向量),节省内存: 可以使用不同的核函数用于决策: 缺点: 如果特征的数目远远大于样本的数目,性能将会降低: 不能直接提供概率…
课程文本分类project SVM算法入门 转自:http://www.blogjava.net/zhenandaci/category/31868.html (一)SVM的简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本.非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]. 支持向量机方法是建立在统计学习理论的VC 维理论和结构风险最小原理基础上的,根据有限的样本信息…
转自:http://blog.csdn.net/yangliuy/article/details/7316496SVM入门(一)至(三)Refresh 按:之前的文章重新汇编一下,修改了一些错误和不当的说法,一起复习,然后继续SVM之旅. (一)SVM的简介 支持向量机(Support Vector Machine)是Cortes和Vapnik于1995年首先提出的,它在解决小样本.非线性及高维模式识别中表现出许多特有的优势,并能够推广应用到函数拟合等其他机器学习问题中[10]. 支持向量机方法…
转载,http://blog.csdn.net/gamer_gyt 目录(?)[+] ====================================================================== 本系列博客主要参考 Scikit-Learn 官方网站上的每一个算法进行,并进行部分翻译,如有错误,请大家指正 转载请注明出处,谢谢 =====================================================================…
Spark机器学习 Day1 机器学习概述 今天主要讨论个问题:Spark机器学习的本质是什么,其内部构成到底是什么. 简单来说,机器学习是数据+算法. 数据 在Spark中做机器学习,肯定有数据来源,在Spark的最底层肯定是RDD封装,这个和Spark具体是什么版本没有任何关系,版本发展只不过是提供了更多高层的API而已,例如DataFrame.Dataset等,而之所以有DataFrame.Dataset,一般情况下是为了使用统一的优化引擎(抽象程度越高,优化算法和空间越大). RDD有一…
Spark机器学习库现支持两种接口的API:RDD-based和DataFrame-based,Spark官方网站上说,RDD-based APIs在2.0后进入维护模式,主要的机器学习API是spark-ml包中的DataFrame-based API,并将在3.0后完全移除RDD-based API. 在学习了两周Spark MLlib后,准备转向DataFrame-based接口.由于现有的文档资料均是RDD-based接口,于是便去看了看Spark MLlib的源码.DataFrame-…
关键字(keywords):SVM 支持向量机 SMO算法 实现 机器学习 假设对SVM原理不是非常懂的,能够先看一下入门的视频,对帮助理解非常实用的,然后再深入一点能够看看这几篇入门文章,作者写得挺具体,看完以后SVM的基础就了解得差点儿相同了,再然后买本<支持向量机导论>作者是Nello Cristianini 和 John Shawe-Taylor,电子工业出版社的.然后把书本后面的那个SMO算法实现就基本上弄懂了SVM是怎么一回事,最后再编写一个SVM库出来,比方说像libsvm等工具…
1.SVM讲解 新闻分类案例 SVM是一个很复杂的算法,不是一篇博文就能够讲完的,所以此篇的定位是初学者能够接受的程度,并且讲的都是SVM的一种思想,通过此篇能够使读着会使用SVM就行,具体SVM的推导过程有一篇博文是讲得非常细的,具体链接我放到最后面,供大家参考. 1.1支持向量机(SVM)的由来 首先我们先来看一个3维的平面方程:Ax+By+Cz+D=0 这就是我们中学所学的,从这个方程我们可以推导出二维空间的一条直线:Ax+By+D=0 那么,依次类推,更高维的空间叫做一个超平面: x代表…
一步步教你轻松学支持向量机SVM算法之案例篇2 (白宁超 2018年10月22日10:09:07) 摘要:支持向量机即SVM(Support Vector Machine) ,是一种监督学习算法,属于分类的范畴.首先,支持向量机不是一种机器,而是一种机器学习算法.在数据挖掘的应用中,与无监督学习的聚类相对应和区别.广泛应用于机器学习,计算机视觉和数据挖掘当中.(本文原创,转载必须注明出处.) 目录 1 机器学习:一步步教你轻松学KNN模型算法 2 机器学习:一步步教你轻松学决策树算法 3 机器学…
一步步教你轻松学支持向量机SVM算法之理论篇1 (白宁超 2018年10月22日10:03:35) 摘要:支持向量机即SVM(Support Vector Machine) ,是一种监督学习算法,属于分类的范畴.首先,支持向量机不是一种机器,而是一种机器学习算法.在数据挖掘的应用中,与无监督学习的聚类相对应和区别.广泛应用于机器学习,计算机视觉和数据挖掘当中.(本文原创,转载必须注明出处.) 目录 1 机器学习:一步步教你轻松学KNN模型算法 2 机器学习:一步步教你轻松学决策树算法 3 机器学…
在一个理想的分类当中,我们想要用一个超平面来将正类样本和负类样本划分开来.这个超平面的方程为 $\mathbf{w}^T\mathbf{x}+b=0$ 我们希望这个超平面能够使得划分更加的鲁棒,在图形上表现为超平面正好位于正类样本和负类样本的正中间,运用这种思想,我们引入了svm算法. 为什么正分类大于等于1而不是0 对于超平面$\mathbf{w}^T\mathbf{x}+b=0$, 分类为正的样本在平面的一侧,满足$\mathbf{w}^T\mathbf{x}_i+b  > 0 , y_i…
线性模型 逻辑回归--逻辑损失(logistic loss) 线性支持向量机(Support Vector Machine, SVM)--合页损失(hinge loss) 朴素贝叶斯(Naive Bayes) 决策树 0 准备数据 kaggle2.blob.core.windows.net/competitions-data/kaggle/3526/train.tsv sed 1d train.tsv > train_noheader.tsv 0 运行环境 cd /Users/erichan/G…
一.核函数(Kernel Function) 1)格式 K(x, y):表示样本 x 和 y,添加多项式特征得到新的样本 x'.y',K(x, y) 就是返回新的样本经过计算得到的值: 在 SVM 类型的算法 SVC() 中,K(x, y) 返回点乘:x' . y' 得到的值: 2)多项式核函数 业务问题:怎么分类非线性可分的样本的分类? 内部实现: 对传入的样本数据点添加多项式项: 新的样本数据点进行点乘,返回点乘结果: 多项式特征的基本原理:依靠升维使得原本线性不可分的数据线性可分: 升维的…
机器学习牛人博客 机器学习实战之SVM 三种SVM的对偶问题 拉格朗日乘子法和KKT条件 支持向量机通俗导论(理解SVM的三层境界) 解密SVM系列(一):关于拉格朗日乘子法和KKT条件 解密SVM系列(二):SVM的理论基础 解密SVM系列(三):SMO算法原理与实战求解 (一)关于拉格朗日乘子法 首先来了解拉格朗日乘子法,那么为什么需要拉格朗日乘子法?记住,有拉格朗日乘子法的地方,必然是一个组合优化问题.那么带约束的优化问题很好说,就比如说下面这个:   minf=2x21+3x22+7x2…
KNN(K Nearest Neighbor) 还是先记几个关键公式 距离:一般用Euclidean distance   E(x,y)√∑(xi-yi)2 .名字这么高大上,就是初中学的两点间的距离嘛. 还有其他距离的衡量公式,余弦值(cos),相关度(correlation) 曼哈顿距离(manhatann distance).我觉得针对于KNN算法还是Euclidean distance最好,最直观. 然后就选择最近的K个点.根据投票原则分类出结果. 首先利用sklearn自带的的iris…
svm分类算法在opencv3中有了很大的变动,取消了CvSVMParams这个类,因此在参数设定上会有些改变. opencv中的svm分类代码,来源于libsvm. #include "opencv2/opencv.hpp" using namespace cv; using namespace cv::ml; int main(int, char**) { , height = ; Mat image = Mat::zeros(height, width, CV_8UC3); //…
做机器学习的一定对支持向量机(support vector machine-SVM)颇为熟悉,因为在深度学习出现之前,SVM一直霸占着机器学习老大哥的位子.他的理论很优美,各种变种改进版本也很多,比如latent-SVM, structural-SVM等.这节先来看看SVM的理论吧,在(图一)中A图表示有两类的数据集,图B,C,D都提供了一个线性分类器来对数据进行分类?但是哪个效果好一些? (图一) 可能对这个数据集来说,三个的分类器都一样足够好了吧,但是其实不然,这个只是训练集,现实测试的样本…
除了在Matlab中使用PRTools工具箱中的svm算法,Python中一样可以使用支持向量机做分类.因为Python中的sklearn库也集成了SVM算法,本文的运行环境是Pycharm. 一.导入sklearn算法包 Scikit-Learn库已经实现了所有基本机器学习的算法,具体使用详见官方文档说明:http://scikit-learn.org/stable/auto_examples/index.html#support-vector-machines. skleran中集成了许多算…